Original entry on oeis.org
1, 1, 2, 48, 414720, 309586821120000, 62298599877271470735360000000000, 221419738218975714643056286355472083897548800000000000000000000, 30963454718960054822969246779894642673092903344400531870724683866888280945459200000000000000000000000000000000000
Offset: 1
-
lst={};p0=p1=p2=p3=1;Do[p0*=a[n];p1*=p0;p2*=p1;p3*=p2;AppendTo[lst,p3],{n,1,2*3!}];lst
A152689
Apply partial sum operator thrice to factorials.
Original entry on oeis.org
0, 0, 0, 1, 4, 11, 28, 79, 284, 1363, 8356, 61583, 523924, 5024179, 53479148, 624890431, 7946278828, 109195935539, 1612048228564, 25439293045903, 427278358483556, 7609502950269523, 143217213477235804, 2840152418116022399
Offset: 0
-
[0] cat [((n^2 -3*n +1)*(&+[Factorial(k): k in [0..(n-1)]]) -(n-2)*Factorial(n) +2*(n-1))/2: n in [1..30]]; // G. C. Greubel, Sep 13 2018
-
With S[n_]:= Sum[k!, {k,0,n-1}];
Table[Sum[Sum[S[j], {j,0,m-1}], {m,0,n -1}], {n, 0, 30}] (* or *) Table[((n^2 - 3*n + 1)*S[n] - (n - 2)*n! + 2*(n - 1))/2, {n, 0, 30}] (* G. C. Greubel, Sep 13 2018 *)
-
for(n=0,30, print1(((n^2-3*n+1)*sum(k=0,n-1, k!) - (n-2)*n! + 2*(n -1))/2, ", ")) \\ G. C. Greubel, Sep 13 2018
A152690
Partial sums of superfactorials (A000178).
Original entry on oeis.org
1, 2, 4, 16, 304, 34864, 24918064, 125436246064, 5056710181206064, 1834938528961266006064, 6658608419043265483506006064, 265790273955000365854215115506006064
Offset: 1
-
lst={};p0=1;s0=0;Do[p0*=a[n];s0+=p0;AppendTo[lst,s0],{n,0,4!}];lst
s = 0; lst = {s}; Do[s += BarnesG[n]; AppendTo[lst, s], {n, 2, 13, 1}]; lst (* Zerinvary Lajos, Jul 16 2009 *)
Table[Sum[BarnesG[k+1],{k,1,n}],{n,1,15}] (* Vaclav Kotesovec, Jul 10 2015 *)
Showing 1-3 of 3 results.