A152750 Eight times hexagonal numbers: a(n) = 8*n*(2*n-1).
0, 8, 48, 120, 224, 360, 528, 728, 960, 1224, 1520, 1848, 2208, 2600, 3024, 3480, 3968, 4488, 5040, 5624, 6240, 6888, 7568, 8280, 9024, 9800, 10608, 11448, 12320, 13224, 14160, 15128, 16128, 17160, 18224, 19320, 20448, 21608, 22800, 24024, 25280, 26568, 27888, 29240
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ 8*n*(2*n-1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
A152750:=n->8*n*(2*n-1); seq(A152750(n), n=0..50); # Wesley Ivan Hurt, Jun 09 2014
-
Mathematica
Table[8*n*(2*n - 1), {n, 0, 50}] (* Wesley Ivan Hurt, Jun 09 2014 *)
-
PARI
concat(0, Vec(8*x*(1+3*x)/(1-x)^3 + O(x^50))) \\ Colin Barker, Sep 25 2016
Formula
a(n) = A067239(n), for n > 0.
a(n) = a(n-1) + 32*n - 24 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From Colin Barker, Sep 25 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 8*x*(1+3*x)/(1-x)^3. (End)
Sum_{n>=1} 1/a(n) = log(2)/4. - Vaclav Kotesovec, Sep 25 2016
E.g.f.: 8*exp(x)*x*(1 + 2*x). - Elmo R. Oliveira, Dec 15 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 - log(2)/8. - Amiram Eldar, May 05 2025
Comments