cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195320 7 times hexagonal numbers: a(n) = 7*n*(2*n-1).

Original entry on oeis.org

0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0

Views

Author

Omar E. Pol, Sep 18 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277.
Also sequence found by reading the same line (mentioned above) in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 7*n = 7*A000384(n).
G.f.: -7*x*(1+3*x)/(x-1)^3. - R. J. Mathar, Sep 27 2011
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 7*exp(x)*x*(2*x + 1).
a(n) = A316466(n) - n = A024966(2*n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A187586 T(n,k)=Number of n-step E, S, NW and NE-moving king's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 6, 0, 16, 20, 8, 0, 25, 42, 48, 5, 0, 36, 72, 120, 84, 0, 0, 49, 110, 224, 286, 106, 0, 0, 64, 156, 360, 604, 578, 104, 0, 0, 81, 210, 528, 1038, 1484, 1069, 78, 0, 0, 100, 272, 728, 1588, 2794, 3514, 1708, 34, 0, 0, 121, 342, 960, 2254, 4508, 7480, 7666, 2309, 13
Offset: 1

Views

Author

R. H. Hardin Mar 11 2011

Keywords

Comments

Table starts
.1.4...9...16....25.....36.....49......64......81.....100.....121.....144
.0.6..20...42....72....110....156.....210.....272.....342.....420.....506
.0.8..48..120...224....360....528.....728.....960....1224....1520....1848
.0.5..84..286...604...1038...1588....2254....3036....3934....4948....6078
.0.0.106..578..1484...2794...4508....6626....9148...12074...15404...19138
.0.0.104.1069..3514...7480..12874...19696...27946...37624...48730...61264
.0.0..78.1708..7666..19104..35832...57592...84384..116208..153064..194952
.0.0..34.2309.15056..45718..95776..164135..250132..353767..475040..613951
.0.0..13.2792.27252.103108.246792..458018..732810.1069534.1468190.1928778
.0.0...0.3108.45960.219432.609070.1243461.2111652.3201436.4508924

Examples

			Some k=4 solutions for 4X4
..0..0..0..0....3..0..0..0....0..0..0..0....0..4..0..0....0..0..0..3
..0..0..0..0....4..2..0..0....4..2..0..0....3..0..0..0....0..0..2..4
..0..1..2..0....1..0..0..0....0..3..1..0....0..2..0..0....0..0..0..1
..0..0..3..4....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
		

Crossrefs

Row 2 is A002943(n-1)
Row 3 is A152750(n-1)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 6*k + 2
Empirical: T(3,k) = 16*k^2 - 40*k + 24
Empirical: T(4,k) = 58*k^2 - 204*k + 174 for k>2
Empirical: T(5,k) = 202*k^2 - 912*k + 994 for k>3
Empirical: T(6,k) = 714*k^2 - 3888*k + 5104 for k>4
Empirical: T(7,k) = 2516*k^2 - 15980*k + 24408 for k>5
Empirical: T(8,k) = 8819*k^2 - 63926*k + 111127 for k>6
Empirical: T(9,k) = 30966*k^2 - 251630*k + 489234 for k>7
Empirical: T(10,k) = 108852*k^2 - 978404*k + 2100276 for k>8

A067239 a(0)=1, a(n) = 8*n*(2*n-1).

Original entry on oeis.org

1, 8, 48, 120, 224, 360, 528, 728, 960, 1224, 1520, 1848, 2208, 2600, 3024, 3480, 3968, 4488, 5040, 5624, 6240, 6888, 7568, 8280, 9024, 9800, 10608, 11448, 12320, 13224, 14160, 15128, 16128, 17160, 18224, 19320, 20448, 21608, 22800, 24024
Offset: 0

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

Engel expansion of cosh(1/2).
Also, 8 times hexagonal numbers (8*A000384(n) = A152750(n)), for n > 0. - Omar E. Pol, Dec 14 2008

Crossrefs

Cf. A006784 for Engel expansion definition.

Programs

Formula

a(n) = a(n-1) + 32*n - 24 (with a(1)=8). - Vincenzo Librandi, Dec 15 2010
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: (1 + 5*x + 27*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: 1 + 8*exp(x)*x*(1 + 2*x). - Elmo R. Oliveira, Dec 15 2024
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=0} 1/a(n) = log(2)/4 + 1.
Sum_{n>=0} (-1)^n/a(n) = 1 - Pi/16 + log(2)/8. (End)

A267522 a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3.

Original entry on oeis.org

8, 56, 176, 400, 760, 1288, 2016, 2976, 4200, 5720, 7568, 9776, 12376, 15400, 18880, 22848, 27336, 32376, 38000, 44240, 51128, 58696, 66976, 76000, 85800, 96408, 107856, 120176, 133400, 147560, 162688, 178816, 195976, 214200, 233520, 253968, 275576, 298376, 322400
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Partial sums of A152750.

Examples

			a(0) = (0 + 2)*(1 + 3) = 8;
a(1) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) = 56;
a(2) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) = 176;
a(3) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) + (6 + 8)*(7 + 9) = 400, etc
		

Crossrefs

Programs

  • Mathematica
    Table[(4 (n + 1)) (n + 2) ((4 n + 3)/3), {n, 0, 38}]
    LinearRecurrence[{4, -6, 4, -1}, {8, 56, 176, 400}, 39]
  • PARI
    a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3; \\ Michel Marcus, Apr 10 2016
    
  • PARI
    x='x+O('x^99); Vec(8*(1+3*x)/(1-x)^4) \\ Altug Alkan, Apr 10 2016

Formula

G.f.: 8*(1 + 3*x)/(1 - x)^4.
E.g.f.: (4/3)*exp(x)*(6 + 36*x + 27*x^2 + 4*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 4*A268684(n + 1).
Sum_{n>=0} 1/a(n) = -3*(2*Pi - 12*log(2) + 1)/20 = 0.15518712893...
a(n) = 8*A002412(n+1). - Yasser Arath Chavez Reyes, Feb 23 2024
Showing 1-4 of 4 results.