cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085250 4 times hexagonal numbers: a(n) = 4*n*(2*n-1).

Original entry on oeis.org

0, 4, 24, 60, 112, 180, 264, 364, 480, 612, 760, 924, 1104, 1300, 1512, 1740, 1984, 2244, 2520, 2812, 3120, 3444, 3784, 4140, 4512, 4900, 5304, 5724, 6160, 6612, 7080, 7564, 8064, 8580, 9112, 9660, 10224, 10804, 11400, 12012, 12640, 13284
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2003

Keywords

Comments

a(n) also can represented as n concentric squares (see example). - Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 4, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric squares:
.
.                           o o o o o o o o o o
.                           o                 o
.            o o o o o o    o   o o o o o o   o
.            o         o    o   o         o   o
.     o o    o   o o   o    o   o   o o   o   o
.     o o    o   o o   o    o   o   o o   o   o
.            o         o    o   o         o   o
.            o o o o o o    o   o o o o o o   o
.                           o                 o
.                           o o o o o o o o o o
.
.      4          24                 60
.
(End)
		

Crossrefs

Programs

Formula

a(n) = A067239(n)/2, for n>0.
Sum_{n>0} 1/a(n) = log(2)/2.
a(n) = A000384(n)*4. - Omar E. Pol, Dec 11 2008
a(n) = 16*n + a(n-1) - 12 (with a(0)=0). - Vincenzo Librandi, Aug 08 2010
G.f.: 4*x*(1 + 3*x)/(1 - 3*x + 3*x^2 - x^3). - Colin Barker, Jan 04 2012
E.g.f.: 4*x*(2*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A046092(2n-1), for n > 0. - Bruce J. Nicholson, Sep 04 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 - log(2)/4. - Amiram Eldar, Mar 17 2022

Extensions

Edited by Don Reble, Nov 13 2005
Added zero, better definition, corrected offset and edited original formula. - Omar E. Pol, Dec 11 2008

A152750 Eight times hexagonal numbers: a(n) = 8*n*(2*n-1).

Original entry on oeis.org

0, 8, 48, 120, 224, 360, 528, 728, 960, 1224, 1520, 1848, 2208, 2600, 3024, 3480, 3968, 4488, 5040, 5624, 6240, 6888, 7568, 8280, 9024, 9800, 10608, 11448, 12320, 13224, 14160, 15128, 16128, 17160, 18224, 19320, 20448, 21608, 22800, 24024, 25280, 26568, 27888, 29240
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Equals Engel expansion of cosh(1/2), except first member (see A067239).
Also sequence found by reading the line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 18 2011
a(n) = the sum of the edges of a rectangular prism having edges 2*(n-1)*n, n^2 - (n-1)^2, and n^2 + (n-1)^2. - J. M. Bergot, Apr 24 2014

Crossrefs

Programs

Formula

a(n) = 16*n^2 - 8*n = 8*A000384(n) = 4*A002939(n) = 2*A085250(n).
a(n) = A067239(n), for n > 0.
a(n) = a(n-1) + 32*n - 24 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From Colin Barker, Sep 25 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 8*x*(1+3*x)/(1-x)^3. (End)
Sum_{n>=1} 1/a(n) = log(2)/4. - Vaclav Kotesovec, Sep 25 2016
E.g.f.: 8*exp(x)*x*(1 + 2*x). - Elmo R. Oliveira, Dec 15 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 - log(2)/8. - Amiram Eldar, May 05 2025
Showing 1-2 of 2 results.