A152760 4 times 9-gonal numbers: a(n) = 2*n*(7*n-5).
0, 4, 36, 96, 184, 300, 444, 616, 816, 1044, 1300, 1584, 1896, 2236, 2604, 3000, 3424, 3876, 4356, 4864, 5400, 5964, 6556, 7176, 7824, 8500, 9204, 9936, 10696, 11484, 12300, 13144, 14016, 14916, 15844, 16800, 17784, 18796, 19836, 20904, 22000, 23124
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,4,8!,28}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *) 4*PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,4,36},50] (* Harvey P. Dale, Aug 26 2019 *)
-
PARI
a(n)=2*n*(7*n-5) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = a(n-1) + 28*n - 24 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 4*x*(1+6*x)/(1-x)^3. (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 2*exp(x)*x*(2 + 7*x).
a(n) = n + A195021(n). (End)
Comments