A152767 3 times 10-gonal (or decagonal) numbers: a(n) = 3*n*(4*n-3).
0, 3, 30, 81, 156, 255, 378, 525, 696, 891, 1110, 1353, 1620, 1911, 2226, 2565, 2928, 3315, 3726, 4161, 4620, 5103, 5610, 6141, 6696, 7275, 7878, 8505, 9156, 9831, 10530, 11253, 12000, 12771, 13566, 14385, 15228, 16095, 16986, 17901, 18840, 19803, 20790, 21801
Offset: 0
Examples
For n=8, a(8) = (1*3 + 5*7 + 9*11 +..+ 29*31) - (2*4 + 6*8 + 10*12 +..+ 26*28) = 696 (see Problem 1052 in References). - _Bruno Berselli_, Dec 12 2010
References
- "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno), Jan. 1910 p. 47 (Problem 1052).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[3n(4n-3),{n,0,40}] (* Harvey P. Dale, May 26 2012 *)
-
PARI
a(n)=3*n*(4*n-3) \\ Charles R Greathouse IV, Sep 28 2015
Formula
a(n) = 12*n^2 - 9*n = 3*A001107(n).
a(n) = a(n-1) + 24*n - 21, n > 0. - Vincenzo Librandi, Nov 26 2010
a(n) = Sum_{k=0..n-1} A001539(k) - Sum_{k=0..n-1} 4*A002939(k) if n > 0 (see References, Problem 1052). - Bruno Berselli, Dec 08 2010 - Jan 21 2011
G.f.: -3*x*(1+7*x)/(x-1)^3.
a(0)=0, a(1)=3, a(2)=30, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 26 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 4*x).
a(n) = A153794(n) - n. (End)
Comments