A152787 Numbers k such that both k and k^2/2 are averages of twin prime pairs.
6, 12, 42, 72, 600, 642, 882, 2130, 2382, 2688, 3558, 3582, 4548, 6132, 7548, 8010, 9042, 13398, 13932, 15972, 17598, 19140, 21492, 26250, 26262, 34512, 38670, 39228, 39342, 48312, 49740, 52542, 53088, 53592, 55050, 55662, 56100, 56712, 65028, 65448, 65520
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[2*k:k in [1..40000]| IsPrime(2*k-1) and IsPrime(2*k+1) and IsPrime(2*k^2 -1) and IsPrime(2*k^2 +1) ]; // Marius A. Burtea, Dec 31 2019
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];If[p2-p1==2,e=(2*(p1+1))^(1/2);i=Floor[e]; If[e==i,If[PrimeQ[i-1]&&PrimeQ[i+1],AppendTo[lst,i]]]],{n,10!}];lst Select[Mean/@Select[Partition[Prime[Range[10000]],2,1],#[[2]]-#[[1]] == 2&],And@@PrimeQ[#^2/2+{1,-1}]&](* Harvey P. Dale, May 12 2014 *)
Formula
Extensions
Rephrased definition by R. J. Mathar, Jan 08 2009
More terms from Harvey P. Dale, May 12 2014