cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152787 Numbers k such that both k and k^2/2 are averages of twin prime pairs.

Original entry on oeis.org

6, 12, 42, 72, 600, 642, 882, 2130, 2382, 2688, 3558, 3582, 4548, 6132, 7548, 8010, 9042, 13398, 13932, 15972, 17598, 19140, 21492, 26250, 26262, 34512, 38670, 39228, 39342, 48312, 49740, 52542, 53088, 53592, 55050, 55662, 56100, 56712, 65028, 65448, 65520
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [2*k:k in [1..40000]| IsPrime(2*k-1) and IsPrime(2*k+1) and IsPrime(2*k^2 -1) and IsPrime(2*k^2 +1) ]; // Marius A. Burtea, Dec 31 2019
  • Mathematica
    lst={};Do[p1=Prime[n];p2=Prime[n+1];If[p2-p1==2,e=(2*(p1+1))^(1/2);i=Floor[e]; If[e==i,If[PrimeQ[i-1]&&PrimeQ[i+1],AppendTo[lst,i]]]],{n,10!}];lst
    Select[Mean/@Select[Partition[Prime[Range[10000]],2,1],#[[2]]-#[[1]] == 2&],And@@PrimeQ[#^2/2+{1,-1}]&](* Harvey P. Dale, May 12 2014 *)

Formula

A152786 INTERSECT A014574. - R. J. Mathar, Jan 08 2009

Extensions

Rephrased definition by R. J. Mathar, Jan 08 2009
More terms from Harvey P. Dale, May 12 2014