A152818 Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.
1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
Offset: 0
Examples
From _Omar E. Pol_, Jan 06 2009: (Start) Array begins: 1, 1, 2, 6, 24, 120, ... 1, 4, 18, 96, 600, 4320, ... 1, 12, 108, 960, 9000, 90720, ... 1, 32, 540, 7680, 105000, 1451520, ... 1, 80, 2430, 53760, 1050000, 19595520, ... 1, 192, 10206, 344064, 9450000, 235146240, ... 1, 448, 40824, 2064384, 78750000, 2586608640, ... 1, 1024, 157464, 11796480, 618750000, 26605117440, ... 1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End) Antidiagonal triangle: 1; 1, 1; 1, 4, 2; 1, 12, 18, 6; 1, 32, 108, 96, 24; 1, 80, 540, 960, 600, 120; 1, 192, 2430, 7680, 9000, 4320, 720; 1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. See page 422.
- F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- F. A. Haight, Letter to N. J. A. Sloane, n.d.
Crossrefs
Programs
-
Magma
A152818:= func< n,k | (k+1)^(n-k)*Factorial(k)*Binomial(n,k) >; [A152818(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
-
Mathematica
len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n,0,m}, {k,0,m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *) T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k]; Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
-
PARI
A(n,k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
-
Sage
def A152818_row(n): R.
= ZZ[] P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n)) return P.coefficients() for n in (0..12): print(A152818_row(n)) # Peter Luschny, May 03 2013
Formula
E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)
Extensions
Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009
Comments