cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152818 Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
Offset: 0

Views

Author

Paul Curtz, Dec 13 2008

Keywords

Comments

A009998/A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/A152656. a(n) gives numerators with denominators n! for each row.
Row 0 is A000142. Row 1 is formed from positive members of A001563. Row 2 is A055533. Column 0 is A000012. Column 1 is formed from positive members of A001787. Column 2 is A006043. Column 3 is A006044. - Omar E. Pol, Jan 06 2009

Examples

			From _Omar E. Pol_, Jan 06 2009: (Start)
Array begins:
  1,    1,      2,        6,         24,          120, ...
  1,    4,     18,       96,        600,         4320, ...
  1,   12,    108,      960,       9000,        90720, ...
  1,   32,    540,     7680,     105000,      1451520, ...
  1,   80,   2430,    53760,    1050000,     19595520, ...
  1,  192,  10206,   344064,    9450000,    235146240, ...
  1,  448,  40824,  2064384,   78750000,   2586608640, ...
  1, 1024, 157464, 11796480,  618750000,  26605117440, ...
  1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
  1;
  1,   1;
  1,   4,     2;
  1,  12,    18,     6;
  1,  32,   108,    96,     24;
  1,  80,   540,   960,    600,   120;
  1, 192,  2430,  7680,   9000,  4320,   720;
  1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
		

Crossrefs

Programs

  • Magma
    A152818:= func< n,k | (k+1)^(n-k)*Factorial(k)*Binomial(n,k) >;
    [A152818(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
  • Mathematica
    len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n,0,m}, {k,0,m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
    T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
  • PARI
    A(n,k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
    
  • Sage
    def A152818_row(n):
        R. = ZZ[]
        P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
        return P.coefficients()
    for n in (0..12): print(A152818_row(n))  # Peter Luschny, May 03 2013
    

Formula

E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)

Extensions

Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009