A152842 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,...] DELTA [3,-2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
1, 1, 3, 1, 4, 3, 1, 7, 15, 9, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 12, 57, 136, 171, 108, 27, 1, 15, 93, 307, 579, 621, 351, 81, 1, 16, 108, 400, 886, 1200, 972, 432, 81, 1, 19, 156, 724, 2086, 3858, 4572, 3348, 1377, 243, 1, 20, 175, 880, 2810, 5944, 8430, 7920
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 0: 1 1: 1 3 2: 1 4 3 3: 1 7 15 9 4: 1 8 22 24 9 5: 1 11 46 90 81 27 6: 1 12 57 136 171 108 27 7: 1 15 93 307 579 621 351 81 8: 1 16 108 400 886 1200 972 432 81 9: 1 19 156 724 2086 3858 4572 3348 1377 243 10: 1 20 175 880 2810 5944 8430 7920 4725 1620 243 11: 1 23 235 1405 5450 14374 26262 33210 28485 15795 5103 729 12: 1 24 258 1640 6855 19824 40636 59472 61695 44280 20898 5832 729 ... reformatted and extended. - _Franck Maminirina Ramaharo_, Feb 28 2018
Links
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
Programs
-
Haskell
a152842 n k = a152842_tabl !! n !! k a152842_row n = a152842_tabl !! n a152842_tabl = map fst $ iterate f ([1], 3) where f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 4 - z) -- Reinhard Zumkeller, May 01 2014
Formula
T(n,k) = T(n-1,k) + (2-(-1)^n)*T(n-1,k-1).
Sum_{k=0..n} T(n,k) = A094015(n).
T(n,n) = A108411(n+1).
T(2n,n) = A069835(n).
G.f.: (1+x+x*y)/(1-x^2-4*x^2*y-3*x^2*y^2). - Philippe Deléham , Nov 09 2013
T(n,k) = T(n-2,k) + 4*T(n-2,k-1) + 3*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013