cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152842 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,...] DELTA [3,-2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 1, 7, 15, 9, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 12, 57, 136, 171, 108, 27, 1, 15, 93, 307, 579, 621, 351, 81, 1, 16, 108, 400, 886, 1200, 972, 432, 81, 1, 19, 156, 724, 2086, 3858, 4572, 3348, 1377, 243, 1, 20, 175, 880, 2810, 5944, 8430, 7920
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2008

Keywords

Examples

			The triangle T(n,k) begins:
n\k  0   1    2     3     4      5      6      7      8      9     10    11   12
0:   1
1:   1   3
2:   1   4    3
3:   1   7   15     9
4:   1   8   22    24     9
5:   1  11   46    90    81     27
6:   1  12   57   136   171    108     27
7:   1  15   93   307   579    621    351     81
8:   1  16  108   400   886   1200    972    432     81
9:   1  19  156   724  2086   3858   4572   3348   1377    243
10:  1  20  175   880  2810   5944   8430   7920   4725   1620    243
11:  1  23  235  1405  5450  14374  26262  33210  28485  15795   5103   729
12:  1  24  258  1640  6855  19824  40636  59472  61695  44280  20898  5832  729
... reformatted and extended. - _Franck Maminirina Ramaharo_, Feb 28 2018
		

Crossrefs

Programs

  • Haskell
    a152842 n k = a152842_tabl !! n !! k
    a152842_row n = a152842_tabl !! n
    a152842_tabl = map fst $ iterate f ([1], 3) where
       f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 4 - z)
    -- Reinhard Zumkeller, May 01 2014

Formula

T(n,k) = T(n-1,k) + (2-(-1)^n)*T(n-1,k-1).
Sum_{k=0..n} T(n,k) = A094015(n).
T(n,n) = A108411(n+1).
T(2n,n) = A069835(n).
G.f.: (1+x+x*y)/(1-x^2-4*x^2*y-3*x^2*y^2). - Philippe Deléham , Nov 09 2013
T(n,k) = T(n-2,k) + 4*T(n-2,k-1) + 3*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013