cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.

Original entry on oeis.org

0, 1, 0, 3, 4, 1, 0, 9, 24, 22, 8, 1, 0, 27, 108, 171, 136, 57, 12, 1, 0, 81, 432, 972, 1200, 886, 400, 108, 16, 1, 0, 243, 1620, 4725, 7920, 8430, 5944, 2810, 880, 175, 20, 1, 0, 729, 5832, 20898, 44280, 61695, 59472, 40636, 19824, 6855, 1640, 258, 24, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
Row sums gives A001018.

Examples

			The triangle T(n, k) begins:
n\k 0     1      2      3       4       5       6      7        8       9
0:  0     1
1:  0     3      4      1
2:  0     9     24     22       8       1
3:  0    27    108    171     136      57      12       1
4:  0    81    432    972    1200     886     400     108      16       1
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.

Crossrefs

Row 2: row 5 of A158454.
Row 3: row 2 of A220665.
Row 4: row 5 of A219234.

Programs

  • Mathematica
    row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
  • Maxima
    g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
    a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
    T : []$
    for i:1 thru 11 do
      T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
    T;
    
  • PARI
    T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
    tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018

Formula

T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n.
T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1).
T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0.
T(n,1) = A000244(n).
T(n,2) = A120908(n).
T(n,n+1) = A069835(n).
T(n,2*n-1) = A139272(n).
T(n,2*n) = A008586(n).
T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1.
G.f.: x/(1 - y*(x^2 + 4*x + 3)).

Extensions

Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018

A069835 Define an array as follows: b(i,0)=b(0,j)=1, b(i,j) = 2*b(i-1,j-1) + b(i-1,j) + b(i,j-1). Then a(n) = b(n,n).

Original entry on oeis.org

1, 4, 22, 136, 886, 5944, 40636, 281488, 1968934, 13875544, 98365972, 700701808, 5011371964, 35961808432, 258805997752, 1867175631136, 13500088649734, 97794850668952, 709626281415076, 5157024231645616, 37528209137458516, 273431636191026064, 1994448720786816712
Offset: 0

Views

Author

Benoit Cloitre, May 03 2002

Keywords

Comments

2^n*LegendreP(n,k) yields the central coefficients of (1 + 2*k*x + (k^2-1)*x^2)^n, with g.f. 1/sqrt(1 - 4*k*x + 4*x^2) and e.g.f. exp(2*k*x)BesselI(0, 2*sqrt(k^2-1)*x). - Paul Barry, May 25 2005
Number of Delannoy paths from (0,0) to (n,n) with steps U(0,1), H(1,0) and D(1,1) where D can have two colors. - Paul Barry, May 25 2005
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps can have three colors and H steps can have four colors. - N-E. Fahssi, Mar 31 2008
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and two kinds of steps (1,1). - Joerg Arndt, Jul 01 2011
Hankel transform is 2^n*3^C(n+1,2) = (-1)^C(n+1,2)*A127946(n). - Paul Barry, Jan 24 2011
Central terms of triangle A152842. - Reinhard Zumkeller, May 01 2014
Diagonal of rational functions 1/(1 - x - y - 2*x*y), 1/(1 - x - y*z - 2*x*y*z). - Gheorghe Coserea, Jul 06 2018
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Examples

			The array b is a rewriting of A081577:
  1,  1,  1,   1,   1,    1,    1,    1,     1,     1,     1, ...
  1,  4,  7,  10,  13,   16,   19,   22,    25,    28,    31, ...
  1,  7, 22,  46,  79,  121,  172,  232,   301,   379,   466, ...
  1, 10, 46, 136, 307,  586, 1000, 1576,  2341,  3322,  4546, ...
  1, 13, 79, 307, 886, 2086, 4258, 7834, 13327, 21331, 32521, ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A001850.

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)^2*3^k)); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a069835 n = a081577 (2 * n) n -- Reinhard Zumkeller, Mar 16 2014
    
  • Mathematica
    Table[Hypergeometric2F1[-n, -n, 1, 3], {n, 0, 21}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^2*3^k)
    
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+4*x+3*x^2)^n, n))
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1], [1,1]]; /* note the double [1,1] */
    \\ Joerg Arndt, Jul 01 2011
    
  • PARI
    a(n)=pollegendre(n,2)<Charles R Greathouse IV, Mar 18 2017
    

Formula

From Vladeta Jovovic, May 13 2003: (Start)
a(n) = 2^n*LegendreP(n, 2) = 2^n*hypergeom([ -n, n+1], [1], -1/2) = 2^n*GegenbauerC(n, 1/2, 2) = Sum_{k=0..n} 3^k*binomial(n, k)^2.
D-finite with recurrence: a(n) = 4*(2*n-1)/n*a(n-1) - 4*(n-1)/n*a(n-2).
G.f.: 1/sqrt(1 - 8*x + 4*x^2). (End)
a(n) equals the central coefficient of (1 + 4*x + 3*x^2)^n. - Paul D. Hanna, Jun 03 2003
E.g.f.: exp(4*x)*Bessel_I(0, 2*sqrt(3)*x). - Paul Barry, Sep 20 2004
a(n) = Sum_{k=0..floor(n/2)} C(n, k)*C(2*(n-k), n)*(-1)^k*2^(n-2*k). - Paul Barry, May 25 2005
a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)*2^(n-k). - Paul Barry, May 25 2005
a(n) = Sum_{k=0..n} C(n, k)^2*3^k. - Paul Barry, Oct 15 2005
G.f.: 1/(1-4x-6x^2/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2/(1-... (continued fraction). - Paul Barry Jan 24 2011
Asymptotic: a(n) ~ sqrt(1/2 + 1/sqrt(3))*(1+sqrt(3))^(2*n)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 11 2012
0 = a(n)*(16*a(n+1) - 48*a(n+2) + 8*a(n+3)) + a(n+1)*(-16*a(n+1) + 64*a(n+2) - 12*a(n+3)) + a(n+2)*(-4*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Apr 21 2020

A094015 Expansion of (1+4*x)/(1-8*x^2).

Original entry on oeis.org

1, 4, 8, 32, 64, 256, 512, 2048, 4096, 16384, 32768, 131072, 262144, 1048576, 2097152, 8388608, 16777216, 67108864, 134217728, 536870912, 1073741824, 4294967296, 8589934592, 34359738368, 68719476736, 274877906944
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Row sums of triangle A135838. - Gary W. Adamson, Dec 01 2007
Row sums of triangle A152842. - Reinhard Zumkeller, May 01 2014

Crossrefs

Programs

  • Haskell
    a094015 = sum . a152842_row  -- Reinhard Zumkeller, May 01 2014
    
  • Magma
    [2*8^Floor((n-1)/2)*(3+(-1)^n): n in [0..30]]; // G. C. Greubel, Nov 22 2021
    
  • Maple
    a:=n->mul(3-(-1)^j,j=1..n):seq(a(n),n=0..25); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    Table[8^Floor[n/2]*Mod[4^n, 5], {n, 0, 30}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    [8^(n//2)*(4^n%5) for n in (0..30)] # G. C. Greubel, Nov 22 2021

Formula

a(n) = 2^(3*n/2)*(1 + sqrt(2) + (-1)^n*(1 - sqrt(2)))/2.
a(n) = (1/4)*(3 + (-1)^n)*8^floor((n+1)/2). - Paul Barry, Jul 14 2004
a(n) = (1 + sqrt(2))*(2*sqrt(2))^n/2 + (1 - sqrt(2))*(-2*sqrt(2))^n/2. Third binomial transform is A002315 (NSW numbers). - Paul Barry, Jul 17 2004
a(n) = 2^A007494(n). - Paul Barry, Aug 18 2007
a(n) = A016116(n+1)*A000079(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 8^floor(n/2)*A010685(n). - G. C. Greubel, Nov 22 2021
Showing 1-3 of 3 results.