cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096252 Array read by rows, starting with n=0: row n lists A057077(n+1)*8^(n+1)/2, A057077(n+2)*8^(n+1)/2, A057077(n+1)*8^(n+1).

Original entry on oeis.org

4, -4, 8, -32, -32, -64, -256, 256, -512, 2048, 2048, 4096, 16384, -16384, 32768, -131072, -131072, -262144, -1048576, 1048576, -2097152, 8388608, 8388608, 16777216, 67108864, -67108864, 134217728, -536870912, -536870912, -1073741824
Offset: 0

Views

Author

Creighton Dement, Jul 31 2004

Keywords

Comments

a(n) = ves( ('i + 'ii' + 'ij' + 'ik')^n ) a(n) = ves( ('j + 'jj' + 'ji' + 'jk')^n ) a(n) = ves( ('k + 'kk' + 'ki' + 'kj')^n ).
The elements x = 'i + 'ii' + 'ij' + 'ik'; y = 'j + 'jj' + 'ji' + 'jk'; and z = 'k + 'kk' + 'ki' + 'kj' are elements of the ring generated from the quaternion factor space Q X Q / {(1,1), (-1,-1)}. Each is represented by a gray shaded area of "Floret's cube". The elements x/2, y/2, z/2 are members of a group, itself a subset of the real algebra generated from Q X Q / {(1,1), (-1,-1)}, which is isomorphic to Q X C_3 (order 24).
This sequence is the term-wise sum of three sequences: a(n) = ves(x^n) = jes(x^n) + les(x^n) + tes(x^n), where jes(x^n)=(1, -6, 8, -24, 16, 0, -64, 384, -512, 1536, -1024, 0, 4096, -24576, 32768, -98304, ...), les(x^n)=(3, 0, 0, 0, -48, 0 -192, 0, 0, 0, 3072, 0, 12288, 0, 0, 0, ...), tes(x^n)=(0, 2, 0, -8, 0, -64, 0, -128, 0, 512, 0, 4096, 0, 8192, 0, -32768, ...). Concerning "les"- notice that if (..., s, 0, 0, 0, t, ...), then t = -16s and if (..., s, 0, t, ...), then t = 4s.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4(1-x-2x^2-4x^3)/(1-4x^2+16x^4),{x,0,40}],x] (* or *) LinearRecurrence[ {0,4,0,-16},{4,-4,8,-32},40] (* Harvey P. Dale, Feb 15 2024 *)
  • Sage
    [(-1)^(floor((floor(n/3)+((n%3)%2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2)%3) for n in range(30)]
    # Danny Rorabaugh, May 13 2016

Formula

a(n)= 4*a(n-2)-16*a(n-4). G.f.: 4*(1-x-2*x^2-4*x^3)/(1-4*x^2+16*x^4). - R. J. Mathar, Nov 26 2008
a(n) = (-1)^(floor((floor(n/3)+((n mod 3) mod 2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2) mod 3). - Danny Rorabaugh, May 13 2016
a(n) = 4*(-1)^floor((n+1)/2)*A138230(n). - R. J. Mathar, May 21 2019

Extensions

Edited with clearer definition by Omar E. Pol, Dec 29 2008

A113835 a(n) = a(n-1) + 2^(A007494(n-1)).

Original entry on oeis.org

1, 5, 13, 45, 109, 365, 877, 2925, 7021, 23405, 56173, 187245, 449389, 1497965, 3595117, 11983725, 28760941, 95869805, 230087533, 766958445, 1840700269, 6135667565, 14725602157, 49085340525, 117804817261, 392682724205
Offset: 1

Views

Author

Artur Jasinski, Jan 27 2006

Keywords

Crossrefs

Formula

Empirical g.f.: x*(4*x+1) / ((x-1)*(8*x^2-1)). - Colin Barker, Sep 01 2013

Extensions

Edited with better definition and offset corrected by Omar E. Pol, Jan 08 2009

A096980 Expansion of (1+3x)/(1-2x-7x^2).

Original entry on oeis.org

1, 5, 17, 69, 257, 997, 3793, 14565, 55681, 213317, 816401, 3126021, 11966849, 45815845, 175399633, 671510181, 2570817793, 9842206853, 37680138257, 144255724485, 552272416769, 2114334904933, 8094576727249, 30989497789029
Offset: 0

Views

Author

Paul Barry, Jul 17 2004

Keywords

Comments

Second binomial transform is A002315 (NSW numbers). Binomial transform of A094015.
Binomial transform is A108051 (shifted left, without leading zero). - R. J. Mathar, Jul 11 2012

Crossrefs

Programs

  • PARI
    x='x + O('x^24); Vec((1 + 3*x)/(1 - 2*x - 7*x^2)) \\ Indranil Ghosh, Apr 11 2017

Formula

a(n) = (1+sqrt(2))*(1+2*sqrt(2))^n/2 + (1-sqrt(2))*(1-2*sqrt(2))^n/2.
a(n) = 3*Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*(7/2)^k*2^(n-k-1) + Sum_{k=0..floor(n/2)} binomial(n-k, k)*(7/2)^k*2^(n-k).
a(n) = A015519(n+1) + 3*A015519(n). - R. J. Mathar, Jul 11 2012
Satisfies recurrence relation system a(n) = 3*a(n-1) + 2*b(n-1), b(n) = 2*a(n-1) - b(n-1), a(0)=1, b(0)=1. - Ilya Gutkovskiy, Apr 11 2017

A152842 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,...] DELTA [3,-2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 1, 7, 15, 9, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 12, 57, 136, 171, 108, 27, 1, 15, 93, 307, 579, 621, 351, 81, 1, 16, 108, 400, 886, 1200, 972, 432, 81, 1, 19, 156, 724, 2086, 3858, 4572, 3348, 1377, 243, 1, 20, 175, 880, 2810, 5944, 8430, 7920
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2008

Keywords

Examples

			The triangle T(n,k) begins:
n\k  0   1    2     3     4      5      6      7      8      9     10    11   12
0:   1
1:   1   3
2:   1   4    3
3:   1   7   15     9
4:   1   8   22    24     9
5:   1  11   46    90    81     27
6:   1  12   57   136   171    108     27
7:   1  15   93   307   579    621    351     81
8:   1  16  108   400   886   1200    972    432     81
9:   1  19  156   724  2086   3858   4572   3348   1377    243
10:  1  20  175   880  2810   5944   8430   7920   4725   1620    243
11:  1  23  235  1405  5450  14374  26262  33210  28485  15795   5103   729
12:  1  24  258  1640  6855  19824  40636  59472  61695  44280  20898  5832  729
... reformatted and extended. - _Franck Maminirina Ramaharo_, Feb 28 2018
		

Crossrefs

Programs

  • Haskell
    a152842 n k = a152842_tabl !! n !! k
    a152842_row n = a152842_tabl !! n
    a152842_tabl = map fst $ iterate f ([1], 3) where
       f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 4 - z)
    -- Reinhard Zumkeller, May 01 2014

Formula

T(n,k) = T(n-1,k) + (2-(-1)^n)*T(n-1,k-1).
Sum_{k=0..n} T(n,k) = A094015(n).
T(n,n) = A108411(n+1).
T(2n,n) = A069835(n).
G.f.: (1+x+x*y)/(1-x^2-4*x^2*y-3*x^2*y^2). - Philippe Deléham , Nov 09 2013
T(n,k) = T(n-2,k) + 4*T(n-2,k-1) + 3*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013

A135838 Triangle read by rows: T(n,k) = 2^floor(n/2)*binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 12, 12, 4, 4, 16, 24, 16, 4, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 16, 112, 336, 560, 560, 336, 112, 16, 16, 128, 448, 896, 1120, 896, 448, 128, 16, 32, 288, 1152, 2688, 4032, 4032, 2688, 1152, 288, 32
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2,  2;
  2,  4,  2;
  4, 12, 12,  4;
  4, 16, 24, 16,  4;
  8, 40, 80, 80, 40, 8;
  ...
		

Crossrefs

Programs

  • Maple
    A135838 := proc(n,k)
        2^floor(n/2)*binomial(n-1,k-1) ;
    end proc:
    seq(seq( A135838(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
  • Mathematica
    T[n_, k_]:= 2^Floor[n/2]*Binomial[n-1, k-1];
    Table[T[n, k], {n,12}, {k,n}] //Flatten (* G. C. Greubel, Feb 07 2022 *)
  • PARI
    A(n,k) = 2^(n\2)*binomial(n-1,k-1);
    concat(vector(10, n, vector(n, k, A(n,k))))  \\ Gheorghe Coserea, May 18 2016
    
  • Sage
    flatten([[2^(n//2)*binomial(n-1, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022

Formula

M * Pascal's triangle as infinite lower triangular matrices, where M = a triangle with (1, 2, 2, 4, 4, 8, 8, 16, 16, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A094015(n-1).
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A016116(n).
T(n, 2) = 2*A093968(n-1).
T(2*n-1, n) = A059304(n-1).
T(2*n, n) = 2*A069720(n). (End)

A164588 a(n) = ((3 + sqrt(18))*(5 + sqrt(8))^n + (3 - sqrt(18))*(5 - sqrt(8))^n)/6.

Original entry on oeis.org

1, 9, 73, 577, 4529, 35481, 277817, 2174993, 17027041, 133295529, 1043495593, 8168931937, 63949894289, 500627099961, 3919122796697, 30680567267633, 240180585132481, 1880236207775049, 14719292130498313, 115228905772807297, 902061091509601649
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A057084. Second binomial transform of A002315. Third binomial transform of A108051 without initial 0. Fourth binomial transform of A096980. Fifth binomial transform of A094015.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+3*r)*(5+2*r)^n+(3-3*r)*(5-2*r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
    
  • Mathematica
    LinearRecurrence[{10,-17},{1,9},30] (* Harvey P. Dale, Sep 11 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 12 2017

Formula

a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
G.f.: (1-x)/(1-10*x+17*x^2).
E.g.f.: (1/3)*exp(5*x)*(3*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 12 2017

Extensions

Extended by Klaus Brockhaus and R. J. Mathar Aug 24 2009

A107904 Expansion of (1+6x)/(1-12x^2).

Original entry on oeis.org

1, 6, 12, 72, 144, 864, 1728, 10368, 20736, 124416, 248832, 1492992, 2985984, 17915904, 35831808, 214990848, 429981696, 2579890176, 5159780352, 30958682112, 61917364224, 371504185344, 743008370688, 4458050224128, 8916100448256, 53496602689536, 106993205379072
Offset: 0

Views

Author

Paul Barry, May 27 2005

Keywords

Comments

Fourth binomial transform is A107903.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,12},{1,6},30] (* Harvey P. Dale, Sep 22 2014 *)

Formula

a(n) = ((1+sqrt(3))*(2*sqrt(3))^n + (1-sqrt(3))*(-2*sqrt(3))^n)/2.
a(2n) = 12^n, a(2n+1) = 6*12^n.
a(n) = 2^n*A108411(n+1). - R. J. Mathar, Aug 15 2023
From Amiram Eldar, Dec 06 2024: (Start)
Sum_{n>=0} 1/a(n) = 14/11.
Sum_{n>=0} (-1)^n/a(n) = 10/11. (End)
Showing 1-7 of 7 results.