A108051
a(n+1) = 4*(a(n)+a(n-1)) for n>1, a(1)=1, a(2)=6.
Original entry on oeis.org
0, 1, 6, 28, 136, 656, 3168, 15296, 73856, 356608, 1721856, 8313856, 40142848, 193826816, 935878656, 4518821888, 21818802176, 105350496256, 508677193728, 2456110759936, 11859151814656, 57261050298368, 276480808452096
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Robert Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (4,4).
-
I:=[0, 1, 6]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
-
CoefficientList[Series[x*(1+2*x)/(1-4*x-4*x^2),{x,0,40}],x] (* Vincenzo Librandi, Jun 26 2012 *)
A164737
a(n) = 8*a(n-2) for n > 2; a(1) = 5, a(2) = 12.
Original entry on oeis.org
5, 12, 40, 96, 320, 768, 2560, 6144, 20480, 49152, 163840, 393216, 1310720, 3145728, 10485760, 25165824, 83886080, 201326592, 671088640, 1610612736, 5368709120, 12884901888, 42949672960, 103079215104, 343597383680, 824633720832
Offset: 1
-
[ n le 2 select 7*n-2 else 8*Self(n-2): n in [1..26] ];
-
seq(coeff(series( x*(5+12*x)/(1-8*x^2) , x, n+1), x, n), n=1..30); # G. C. Greubel, Apr 16 2020
-
LinearRecurrence[{0,8}, {5,12}, 30] (* G. C. Greubel, Apr 16 2020 *)
-
[(13 -7*(-1)^n)*2^((6*n -11 +3*(-1)^n)/4) for n in (1..30)] # G. C. Greubel, Apr 16 2020
A164588
a(n) = ((3 + sqrt(18))*(5 + sqrt(8))^n + (3 - sqrt(18))*(5 - sqrt(8))^n)/6.
Original entry on oeis.org
1, 9, 73, 577, 4529, 35481, 277817, 2174993, 17027041, 133295529, 1043495593, 8168931937, 63949894289, 500627099961, 3919122796697, 30680567267633, 240180585132481, 1880236207775049, 14719292130498313, 115228905772807297, 902061091509601649
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+3*r)*(5+2*r)^n+(3-3*r)*(5-2*r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
-
LinearRecurrence[{10,-17},{1,9},30] (* Harvey P. Dale, Sep 11 2016 *)
-
x='x+O('x^50); Vec((1-x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 12 2017
A164593
a(n) = ((5 + sqrt(18))*(2 + sqrt(8))^n + (5 - sqrt(18))*(2 - sqrt(8))^n)/2.
Original entry on oeis.org
5, 22, 108, 520, 2512, 12128, 58560, 282752, 1365248, 6592000, 31828992, 153683968, 742051840, 3582943232, 17299980288, 83531694080, 403326697472, 1947433566208, 9403041054720, 45401898483712, 219219758153728, 1058486626549760, 5110825538813952, 24677248661454848
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (4,4).
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(2+2*r)^n+(5-3*r)*(2-2*r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
-
seq(coeff(series( (5+2*x)/(1-4*x-4*x^2) , x, n+1), x, n), n = 0..25); # G. C. Greubel, Apr 16 2020
-
LinearRecurrence[{4, 4}, {5, 22}, 25] (* G. C. Greubel, Aug 12 2017 *)
Table[2^n*(Fibonacci[n+2, 2] + 3*Fibonacci[n+1, 2]), {n,0,25}] (* G. C. Greubel, Apr 16 2020 *)
-
my(x='x+O('x^25)); Vec((5+2*x)/(1-4*x-4*x^2)) \\ G. C. Greubel, Aug 12 2017
-
[2^n*(lucas_number1(n+2, 2, -1) + 3*lucas_number1(n+1, 2, -1)) for n in range(25)] # G. C. Greubel, Apr 16 2020
Showing 1-4 of 4 results.
Comments