A101386
Expansion of g.f.: (5 - 3*x)/(1 - 6*x + x^2).
Original entry on oeis.org
5, 27, 157, 915, 5333, 31083, 181165, 1055907, 6154277, 35869755, 209064253, 1218515763, 7102030325, 41393666187, 241259966797, 1406166134595, 8195736840773, 47768254910043, 278413792619485, 1622714500806867, 9457873212221717, 55124524772523435, 321289275422918893
Offset: 0
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 55, 56.
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- Tanya Khovanova, Recursive Sequences
- Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022.
- Eric Weisstein's World of Mathematics, NSW Number.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!((5 - 3*x)/(1-6*x+x^2))); // G. C. Greubel, Jul 26 2018
-
A101386:= (n) -> simplify(5*ChebyshevU(n, 3) - 3*ChebyshevU(n-1, 3)); seq( A101386(n), n = 0..30); # G. C. Greubel, Mar 17 2020
-
CoefficientList[ Series[(5-3x)/(1-6x+x^2), {x,0,30}], x] (* Robert G. Wilson v, Jan 29 2005 *)
LinearRecurrence[{6,-1},{5,27},30] (* Harvey P. Dale, Apr 23 2016 *)
-
Vec((5-3*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Feb 05 2015
-
[5*chebyshev_U(n,3) -3*chebyshev_U(n-1,3) for n in (0..30)] # G. C. Greubel, Mar 17 2020
A164593
a(n) = ((5 + sqrt(18))*(2 + sqrt(8))^n + (5 - sqrt(18))*(2 - sqrt(8))^n)/2.
Original entry on oeis.org
5, 22, 108, 520, 2512, 12128, 58560, 282752, 1365248, 6592000, 31828992, 153683968, 742051840, 3582943232, 17299980288, 83531694080, 403326697472, 1947433566208, 9403041054720, 45401898483712, 219219758153728, 1058486626549760, 5110825538813952, 24677248661454848
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (4,4).
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(2+2*r)^n+(5-3*r)*(2-2*r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
-
seq(coeff(series( (5+2*x)/(1-4*x-4*x^2) , x, n+1), x, n), n = 0..25); # G. C. Greubel, Apr 16 2020
-
LinearRecurrence[{4, 4}, {5, 22}, 25] (* G. C. Greubel, Aug 12 2017 *)
Table[2^n*(Fibonacci[n+2, 2] + 3*Fibonacci[n+1, 2]), {n,0,25}] (* G. C. Greubel, Apr 16 2020 *)
-
my(x='x+O('x^25)); Vec((5+2*x)/(1-4*x-4*x^2)) \\ G. C. Greubel, Aug 12 2017
-
[2^n*(lucas_number1(n+2, 2, -1) + 3*lucas_number1(n+1, 2, -1)) for n in range(25)] # G. C. Greubel, Apr 16 2020
A164594
a(n) = ((5 + sqrt(18))*(4 + sqrt(8))^n + (5 - sqrt(18))*(4 - sqrt(8))^n)/2.
Original entry on oeis.org
5, 32, 216, 1472, 10048, 68608, 468480, 3198976, 21843968, 149159936, 1018527744, 6954942464, 47491317760, 324291002368, 2214397476864, 15120851795968, 103251634552832, 705046262054912, 4814357020016640, 32874486063693824, 224481032349417472
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(4+2*r)^n+(5-3*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
-
A164594:= (n) -> simplify( (2*sqrt(2))^n*(5*ChebyshevU(n, sqrt(2)) - 2*sqrt(2)*ChebyshevU(n-1, sqrt(2))) ); seq( A164594(n), n = 0..25); # G. C. Greubel, Apr 21 2020
-
CoefficientList[Series[(5-8*x)/(1-8*x+8*x^2), {x,0,25}], x] (* G. C. Greubel, Aug 12 2017 *)
Table[(2*Sqrt[2])^n*(3*ChebyshevU[n, Sqrt[2]] + 2*ChebyshevT[n, Sqrt[2]]), {n, 0, 25}] (* G. C. Greubel, Apr 21 2020 *)
LinearRecurrence[{8,-8},{5,32},30] (* Harvey P. Dale, Jul 09 2022 *)
-
my(x='x+O('x^25)); Vec((5-8*x)/(1-8*x+8*x^2)) \\ G. C. Greubel, Aug 12 2017
-
[(2*sqrt(2))^n*(5*chebyshev_U(n, sqrt(2)) - 2*sqrt(2)*chebyshev_U(n-1, sqrt(2))) for n in (0..25)] # G. C. Greubel, Apr 21 2020
A164595
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 5, a(1) = 37.
Original entry on oeis.org
5, 37, 285, 2221, 17365, 135893, 1063725, 8327069, 65187365, 510313477, 3994949565, 31274166541, 244827522805, 1916614396853, 15004076080845, 117458316061949, 919513867245125, 7198347299398117, 56351737250814045, 441145468418372461, 3453475150919885845
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(5+2*r)^n+(5-3*r)*(5-2*r)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
-
seq(coeff(series( (5-13*x)/(1-10*x+17*x^2) , x, n+1), x, n), n = 0..25); # G. C. Greubel, Apr 21 2020
-
CoefficientList[Series[(5 -13z)/(1 -10z +17z^2), {z,0,25}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
LinearRecurrence[{10,-17}, {5,37}, 25] (* G. C. Greubel, Aug 11 2017 *)
-
my(x='x+O('x^25)); Vec((5-13*x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 11 2017
-
def A164595_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (5-13*x)/(1-10*x+17*x^2) ).list()
A164595_list(25) # G. C. Greubel, Apr 21 2020
Showing 1-4 of 4 results.
Comments