cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A164595 a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 5, a(1) = 37.

Original entry on oeis.org

5, 37, 285, 2221, 17365, 135893, 1063725, 8327069, 65187365, 510313477, 3994949565, 31274166541, 244827522805, 1916614396853, 15004076080845, 117458316061949, 919513867245125, 7198347299398117, 56351737250814045, 441145468418372461, 3453475150919885845
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A164594. Fifth binomial transform of A164737.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(5+2*r)^n+(5-3*r)*(5-2*r)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
    
  • Maple
    seq(coeff(series( (5-13*x)/(1-10*x+17*x^2) , x, n+1), x, n), n = 0..25); # G. C. Greubel, Apr 21 2020
  • Mathematica
    CoefficientList[Series[(5 -13z)/(1 -10z +17z^2), {z,0,25}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
    LinearRecurrence[{10,-17}, {5,37}, 25] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^25)); Vec((5-13*x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    def A164595_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (5-13*x)/(1-10*x+17*x^2) ).list()
    A164595_list(25) # G. C. Greubel, Apr 21 2020

Formula

a(n) = ((5 + sqrt(18))*(5 + sqrt(8))^n + (5 - sqrt(18))*(5 - sqrt(8))^n)/2.
G.f.: (5-13*x)/(1-10*x+17*x^2).
E.g.f.: exp(5*x)*(5*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*2^(n-k)*(3*Q(2*k+1) + 2*Q(2*k)), where Q(n) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Apr 21 2020

Extensions

Extended by Klaus Brockhaus and R. J. Mathar, Aug 24 2009
Showing 1-1 of 1 results.