cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A164737 a(n) = 8*a(n-2) for n > 2; a(1) = 5, a(2) = 12.

Original entry on oeis.org

5, 12, 40, 96, 320, 768, 2560, 6144, 20480, 49152, 163840, 393216, 1310720, 3145728, 10485760, 25165824, 83886080, 201326592, 671088640, 1610612736, 5368709120, 12884901888, 42949672960, 103079215104, 343597383680, 824633720832
Offset: 1

Views

Author

Klaus Brockhaus, Aug 24 2009

Keywords

Comments

Interleaving of 5*A001018 and 12*A001018.
Binomial transform is A096980 without initial terms 1. Second binomial transform is A164593. Third binomial transform is A101386.

Crossrefs

Cf. A001018 (powers of 8), A067412, A096980, A101386, A164593.

Programs

  • Magma
    [ n le 2 select 7*n-2 else 8*Self(n-2): n in [1..26] ];
    
  • Maple
    seq(coeff(series( x*(5+12*x)/(1-8*x^2) , x, n+1), x, n), n=1..30); # G. C. Greubel, Apr 16 2020
  • Mathematica
    LinearRecurrence[{0,8}, {5,12}, 30] (* G. C. Greubel, Apr 16 2020 *)
  • Sage
    [(13 -7*(-1)^n)*2^((6*n -11 +3*(-1)^n)/4) for n in (1..30)] # G. C. Greubel, Apr 16 2020

Formula

a(n) = (13 - 7*(-1)^n)*2^(1/4*(6*n - 11 + 3*(-1)^n)).
G.f.: x*(5 + 12*x)/(1 - 8*x^2).
Showing 1-1 of 1 results.