cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152887 Number of descents beginning with an even number and ending with an odd number in all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 1, 2, 18, 72, 720, 4320, 50400, 403200, 5443200, 54432000, 838252800, 10059033600, 174356582400, 2440992153600, 47076277248000, 753220435968000, 16005934264320000, 288106816757760000, 6690480522485760000, 133809610449715200000, 3372002183332823040000
Offset: 1

Views

Author

Emeric Deutsch, Jan 19 2009

Keywords

Comments

a(n) is the number of ways to perform the following: Divide the set {1,2,...,n} into three pairwise disjoint subsets, A,B,C so that A union B union C = {1,2,...,n}. Let A contain an odd number of elements and B contain an even number of elements. Linearly order the elements within each subset. - Geoffrey Critzer, Sep 26 2011

Examples

			a(8) = 50400 because (i) the descent pairs can be chosen in 1+2+3+4 = 10 ways, namely (2,1), (4,1), (4,3), (6,1), (6,3), (6,5), (8,1), (8,3), (8,5), (8,7); (ii) they can be placed in 7 positions, namely (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8); (iii) the remaining 6 entries can be permuted in 6! = 720 ways; 10*7*720 = 50400.
		

References

  • Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002, page 170.

Crossrefs

Programs

  • Magma
    [Factorial(n-1)*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16: n in [1..20]]; // Bruno Berselli, Nov 07 2011
  • Maple
    a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n+1, 2) else factorial(n-1)*binomial((1/2)*n+1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
  • Mathematica
    CoefficientList[Series[x/((1 - x) (1 - x^2)^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Geoffrey Critzer, Mar 03 2010 *)

Formula

a(2n) = (2n-1)!*C(n+1,2); a(2n+1) = (2n)!*C(n+1,2).
E.g.f.: x/((1-x^2)^2*(1-x)). - Geoffrey Critzer, Mar 03 2010
a(n) = (n-1)!*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16. - Bruno Berselli, Nov 07 2011
D-finite with recurrence a(n) -2*a(n-1) +(-n^2+2)*a(n-2) +n*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
Sum_{n>=2} 1/a(n) = 4*(CoshIntegral(1) - gamma - 1/e) + 2 = 4*(A099284 - A001620 - A068985) + 2. - Amiram Eldar, Jan 22 2023