cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152929 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two 4-gonal polygonal components chained with string components of length l as l varies.

Original entry on oeis.org

113, 176, 289, 465, 754, 1219, 1973, 3192, 5165, 8357, 13522, 21879, 35401, 57280, 92681, 149961, 242642, 392603, 635245, 1027848, 1663093, 2690941, 4354034, 7044975, 11399009, 18443984, 29842993, 48286977, 78129970, 126416947, 204546917, 330963864, 535510781, 866474645
Offset: 1

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L4, Q: F := fibonacci: L4 := F(3)+F(5): aa := L4*F(n-2)+F(6)*F(n-1): b := L4*F(n-1)+F(6)*F(n): c := F(6)*F(n-2)+F(4)^2*F(n-1): d := F(6)*F(n-1)+F(4)^2*F(n): Q := sqrt((d-aa)^2+4*b*c); lambda := (d+aa+Q)/2: delta := (d+aa-Q)/2: R := ((lambda-d)*L4+b*F(6))/Q: S := ((lambda-aa)*L4-b*F(6))/Q: simplify(R*lambda+S*delta); end proc: # Simplified by M. F. Hasler, Apr 16 2015
  • Mathematica
    LinearRecurrence[{1, 1}, {113, 176}, 50] (* Paolo Xausa, Jul 23 2024 *)
  • PARI
    A152929(n)=50*fibonacci(n)+63*fibonacci(n+1) \\ M. F. Hasler, Apr 14 2015
    
  • PARI
    Vec(x*(113 + 63*x) / (1 - x - x^2) + O(x^30)) \\ Colin Barker, Aug 05 2020

Formula

a(n) = (163*A000045(n)+63*A000032(n))/2. - Conjectured by Philipp Emanuel Weidmann, cf. LINKS.
G.f.: x*(113 + 63*x)/(1 - x - x^2). - M. F. Hasler, Apr 16 2015
a(n) = a(n-1) + a(n-2) for n>2. - Colin Barker, Aug 05 2020
a(n) = Lucas(n+9) - Fibonacci(n+6) - Fibonacci(n-5). - Greg Dresden, Mar 14 2022

Extensions

More terms from M. F. Hasler, Apr 16 2015