cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A152927 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 1 as k varies.

Original entry on oeis.org

7, 113, 1815, 29153, 468263, 7521361, 120810039, 1940481985, 31168521799, 500636830769
Offset: 1

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, m, l: m:=2: l:=1: F := n -> fibonacci(n): L := n -> fibonacci(n-1)+fibonacci(n+1): aa := (m, l) -> L(2*m)*F(l-2)+F(2*m+2)*F(l-1): b := (m, l) -> L(2*m)*F(l-1)+F(2*m+2)*F(l): c := (m, l) -> F(2*m+2)*F(l-2)+F(m+2)^2*F(l-1): d := (m, l) -> F(2*m+2)*F(l-1)+F(m+2)^2*F(l): lambda := (m,l) -> (d(m, l)+aa(m, l)+sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): delta := (m,l) -> (d(m, l)+aa(m, l)-sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): R := (m,l) -> ((lambda(m, l)-d(m, l))*L(2*m)+b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): S := (m,l) -> ((lambda(m, l)-aa(m, l))*L(2*m)-b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): simplify(R(m, l)*lambda(m, l)^(n-1)+S(m, l)*delta(m, l)^(n-1)); end proc;

Formula

Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: x*(7 + x) / (1 - 16*x - x^2).
a(n) = 16*a(n-1) + a(n-2) for n>2.
(End)

A152928 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 1 as m varies.

Original entry on oeis.org

113, 765, 5234, 35865, 245813, 1684818, 11547905, 79150509, 542505650, 3718389033, 25486217573, 174685133970, 1197309720209, 8206482907485, 56248070632178, 385530011517753, 2642462009992085, 18111704058426834, 124139466398995745, 850864560734543373
Offset: 2

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, Q, F, L:  F := fibonacci: L := t -> fibonacci(t-1)+fibonacci(t+1): aa := L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := L(2*n)*F(l-1)+F(2*n+2)*F(l): c :=  F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := F(2*n+2)*F(l-1)+F(n+2)^2*F(l): Q:=sqrt((d-aa)^2+4*b*c); lambda := (d+aa+Q)/2: delta := (d+aa-Q)/2: : simplify(lambda*((lambda-d)*L(2*n)+b*F(2*n+2))/Q+delta*((lambda-aa)*L(2*n)-b*F(2*n+2))/Q); end proc; # Simplified by M. F. Hasler, Apr 16 2015
  • Mathematica
    LinearRecurrence[{8, -8, 1}, {113, 765, 5234}, 30] (* Paolo Xausa, Jul 22 2024 *)
  • PARI
    Vec(x^2*(113 - 139*x + 18*x^2) / ((1 - x)*(1 - 7*x + x^2)) + O(x^20)) \\ Colin Barker, Aug 05 2020

Formula

G.f.: x^2*(113 - 139*x + 18*x^2)/(1 - 8*x + 8*x^2 - x^3). - M. F. Hasler, Apr 16 2015
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4. - Colin Barker, Aug 05 2020

Extensions

More terms from M. F. Hasler, Apr 16 2015

A152930 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 2 as k varies.

Original entry on oeis.org

7, 176, 4393, 109649, 2736832, 68311151, 1705041943, 42557737424, 1062238393657, 26513402104001, 661772814206368, 16517806953055199, 412283401012173607, 10290567218351284976, 256851897057769950793, 6411006859225897484849, 160018319583589667170432
Offset: 1

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, m, l: m:=2: l:=2: F := n -> fibonacci(n): L := n -> fibonacci(n-1)+fibonacci(n+1): aa := (m, l) -> L(2*m)*F(l-2)+F(2*m+2)*F(l-1): b := (m, l) -> L(2*m)*F(l-1)+F(2*m+2)*F(l): c := (m, l) -> F(2*m+2)*F(l-2)+F(m+2)^2*F(l-1): d := (m, l) -> F(2*m+2)*F(l-1)+F(m+2)^2*F(l): lambda := (m,l) -> (d(m, l)+aa(m, l)+sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): delta := (m,l) -> (d(m, l)+aa(m, l)-sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): R := (m,l) -> ((lambda(m, l)-d(m, l))*L(2*m)+b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): S := (m,l) -> ((lambda(m, l)-aa(m, l))*L(2*m)-b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): simplify(R(m, l)*lambda(m, l)^(n-1)+S(m, l)*delta(m, l)^(n-1)); end proc;

Formula

Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: x*(7 + x) / (1 - 25*x + x^2).
a(n) = 25*a(n-1) - a(n-2) for n>1.
(End)

A152931 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of three m-gonal polygonal components chained with string components of length 2 as m varies.

Original entry on oeis.org

4393, 80361, 1425131, 25671393, 459934921, 8258011407, 148150698209, 2658683875329, 47706585218947, 856070631915129, 15361490875216193, 275651271699299271, 4946357927482614361, 88758815221749418713, 1592712152944203460571, 28580061055811939151057
Offset: 2

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=3: l:=2: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n,l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n,l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n,l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n,l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;
  • Mathematica
    LinearRecurrence[{13,104,-260,-260,104,13,-1},{4393,80361,1425131,25671393,459934921,8258011407,148150698209},20] (* Harvey P. Dale, Feb 18 2024 *)

A152932 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of three 6-gonal polygonal components chained with string components of length l as l varies.

Original entry on oeis.org

32733, 80361, 215658, 559305, 1469565, 3842082, 10063989, 26342577, 68971050, 180563265, 472726053, 1237607586, 3240104013, 8482697145, 22207994730, 58141279737, 152215851789, 398506268322, 1043302960485, 2731402605825, 7150904864298, 18721311979761
Offset: 1

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, m: k:=3: m:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (m, n) -> L(2*m)*F(n-2)+F(2*m+2)*F(n-1): b := (m, n) -> L(2*m)*F(n-1)+F(2*m+2)*F(n): c := (m, n) -> F(2*m+2)*F(n-2)+F(m+2)^2*F(n-1): d := (m, n) -> F(2*m+2)*F(n-1)+F(m+2)^2*F(n): lambda := (m,n) -> (d(m, n)+aa(m, n)+sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): delta := (m,n) -> (d(m, n)+aa(m, n)-sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): R := (m,n) -> ((lambda(m, n)-d(m, n))*L(2*m)+b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): S := (m,n) -> ((lambda(m, n)-aa(m, n))*L(2*m)-b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): simplify(R(m, n)*lambda(m, n)^(k-1)+S(m, n)*delta(m, n)^(k-1)); end proc;

Formula

Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: 9*x*(3637 + 1655*x - 1170*x^2) / ((1 + x)*(1 - 3*x + x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>3.
(End)

A152933 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 6-gonal polygonal components chained with string components of length 2 as k varies.

Original entry on oeis.org

18, 1197, 80361, 5394960, 362185569, 24314987763, 1632363850242, 109587212856081, 7357034536009605, 493907598828348264, 33158022432323420133, 2226032671355124283287, 149442611182684237761426, 10032689243282040048565125, 673535162800540841393716209
Offset: 1

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, m, l: m:=3: l:=2: F := n -> fibonacci(n): L := n -> fibonacci(n-1)+fibonacci(n+1): aa := (m, l) -> L(2*m)*F(l-2)+F(2*m+2)*F(l-1): b := (m, l) -> L(2*m)*F(l-1)+F(2*m+2)*F(l): c := (m, l) -> F(2*m+2)*F(l-2)+F(m+2)^2*F(l-1): d := (m, l) -> F(2*m+2)*F(l-1)+F(m+2)^2*F(l): lambda := (m,l) -> (d(m, l)+aa(m, l)+sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): delta := (m,l) -> (d(m, l)+aa(m, l)-sqrt((d(m, l)-aa(m, l))^2+4*b(m, l)*c(m, l)))*(1/2): R := (m,l) -> ((lambda(m, l)-d(m, l))*L(2*m)+b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): S := (m,l) -> ((lambda(m, l)-aa(m, l))*L(2*m)-b(m, l)*F(2*m+2))/(2*lambda(m, l)-d(m, l)-aa(m, l)): simplify(R(m, l)*lambda(m, l)^(n-1)+S(m, l)*delta(m, l)^(n-1)); end proc;

Formula

Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: 9*x*(2 - x) / (1 - 67*x - 9*x^2).
a(n) = 67*a(n-1) + 9*a(n-2) for n>2.
(End)

A152934 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 3 as m varies.

Original entry on oeis.org

289, 1962, 13429, 92025, 630730, 4323069, 29630737, 203092074, 1392013765, 9541004265, 65395016074, 448224108237, 3072173741569, 21056992082730, 144326770837525, 989230403779929, 6780286055621962, 46472771985573789, 318529117843394545, 2183231052918188010
Offset: 2

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=2: l:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n,l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n,l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n,l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n,l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;

Formula

Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: x^2*(289 - 350*x + 45*x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4.
(End)

A152939 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of four 4-gonal polygonal components chained with string components of length l as l varies.

Original entry on oeis.org

29153, 109649, 486385, 2024613, 8634049, 36481021, 154687133, 655020765, 2775107981, 11754906113, 49795616797, 210935942361, 893541701545, 3785099002297, 16033943772281, 67920864283629, 287717416776137, 1218790505711045, 5162879481166789, 21870308363154597
Offset: 1

Views

Author

Steven Schlicker, Dec 15 2008

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, m: k:=4: m:=2: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (m, n) -> L(2*m)*F(n-2)+F(2*m+2)*F(n-1): b := (m, n) -> L(2*m)*F(n-1)+F(2*m+2)*F(n): c := (m, n) -> F(2*m+2)*F(n-2)+F(m+2)^2*F(n-1): d := (m, n) -> F(2*m+2)*F(n-1)+F(m+2)^2*F(n): lambda := (m,n) -> (d(m, n)+aa(m, n)+sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): delta := (m,n) -> (d(m, n)+aa(m, n)-sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): R := (m,n) -> ((lambda(m, n)-d(m, n))*L(2*m)+b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): S := (m,n) -> ((lambda(m, n)-aa(m, n))*L(2*m)-b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): simplify(R(m, n)*lambda(m, n)^(k-1)+S(m, n)*delta(m, n)^(k-1)); end proc;

Formula

Conjectures from Colin Barker, Jul 09 2020: (Start)
G.f.: x*(29153 + 22190*x - 17480*x^2 - 4977*x^3) / ((1 + x - x^2)*(1 - 4*x - x^2)).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4) for n>4.
(End)

A335608 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 2) missing one edge.

Original entry on oeis.org

8, 104, 896, 6800, 49208, 349304, 2459696, 17261600, 120962408, 847130504, 5931094496, 41521204400, 290659059608, 2034645303704, 14242612785296, 99698576475200, 697890896260808, 4885238856628904, 34196679744812096, 239376781458914000, 1675637539948086008
Offset: 2

Views

Author

Steven Schlicker, Jun 15 2020

Keywords

Comments

Number of {0,1} 3 X n matrices with one fixed zero entry and no zero rows or columns.
Number of edge covers of a complete bipartite graph K(3,n) (with n at least 2) missing one edge.

Examples

			For n = 2, a(2) = 8.
		

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[3*7^(# - 1) - 5*3^(# - 1) + 2 &, 21, 2] (* Michael De Vlieger, Jun 22 2020 *)

Formula

a(n) = 3*7^(n-1) - 5*3^(n-1) + 2.
From Stefano Spezia, Jul 04 2020: (Start)
G.f.: x^2*(8 + 16*x)/(1 - 11*x + 31*x^2 - 21*x^3).
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n > 4. (End)

A335613 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the four point part.

Original entry on oeis.org

290, 7568, 140114, 2300576, 35939330, 549221168, 8309585714, 125143712576, 1880658325730, 28234402793168, 423687765591314, 6356518634756576, 95356194832648130, 1430401830434093168, 21456439814417820914, 321849483728499752576, 4827762461533785786530
Offset: 3

Views

Author

Steven Schlicker, Jul 16 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B (with |A| = 4) of a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the removed edges are incident to the same point in A. Points in the sets A and B that correspond to vertices that are connected by edges are the same Euclidean distance apart. This sequence tells the number of sets at each location on the line segment between A and B.
Number of {0,1} 4 X n (with n at least 3) matrices with two fixed zero entries in the same row and no zero rows or columns.
Take a complete bipartite graph K(4,n) (with n at least 3) having parts A and B where |A| = 4. This sequence gives the number of edge covers of the graph obtained from this K(4,n) graph after removing two edges, where the two removed edges are incident to the same vertex in A.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 49*15^(n-2)-76*7^(n-2)+10*3^(n-1)-3 end proc: seq(a(n), n=3..20);
  • PARI
    Vec(2*x^3*(145 + 14*x + 93*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^22)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = 49*15^(n-2) - 76*7^(n-2) + 10*3^(n-1) - 3.
From Colin Barker, Jul 17 2020: (Start)
G.f.: 2*x^3*(145 + 14*x + 93*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n>6.
(End)
Showing 1-10 of 47 results. Next