cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152995 Twice 11-gonal numbers: a(n) = n*(9*n-7).

Original entry on oeis.org

0, 2, 22, 60, 116, 190, 282, 392, 520, 666, 830, 1012, 1212, 1430, 1666, 1920, 2192, 2482, 2790, 3116, 3460, 3822, 4202, 4600, 5016, 5450, 5902, 6372, 6860, 7366, 7890, 8432, 8992, 9570, 10166, 10780, 11412, 12062, 12730, 13416, 14120
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Crossrefs

Cf. A051682 (11-gonal numbers).
Cf. A226488.

Programs

  • GAP
    List([0..50], n-> n*(9*n-7)); # G. C. Greubel, Sep 01 2019
  • Magma
    [n*(9*n-7): n in [0..50]];
    
  • Maple
    seq(n*(9*n-7), n=0..50); # G. C. Greubel, Sep 01 2019
  • Mathematica
    Table[n(9n-7),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,2,22},40] (* Harvey P. Dale, Nov 02 2011 *)
    2*PolygonalNumber[11,Range[0,40]] (* Harvey P. Dale, May 31 2024 *)
  • PARI
    a(n)=n*(9*n-7) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n*(9*n-7) for n in (0..50)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 9*n^2 - 7*n = A051682(n)*2.
a(n) = a(n-1) + 18*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
a(0)=0, a(1)=2, a(2)=22, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 02 2011
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 2*x*(1+8*x)/(1-x)^3.
E.g.f.: x*(2+9*x)*exp(x). (End)