A153111 Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.
1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Luigi Cimmino, Algebraic relations for recursive sequences, arXiv:math/0510417 [math.NT], 2005-2008.
- Jeroen Demeyer, Diophantine sets of polynomials over number fields, arXiv:0807.1970 [math.NT], 2008.
- Franz Lemmermeyer, Conics - a Poor Man's Elliptic Curves, arXiv:math/0311306 [math.NT], 2003.
- Index entries for linear recurrences with constant coefficients, signature (26,-1).
Crossrefs
Programs
-
Magma
I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
-
Mathematica
CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *) LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
PARI
Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
Formula
a(n) = 26*a(n-1) - a(n-2). - Colin Barker, Feb 20 2014
G.f.: -x*(x - 1) / (x^2 - 26*x + 1). - Colin Barker, Feb 20 2014
a(n) = (1/14)*(7 - sqrt(42))*(1 + (13 + 2*sqrt(42))^(2*n - 1))/(13 + 2*sqrt(42))^(n - 1). - Bruno Berselli, Feb 25 2014
E.g.f.: (1/7)*(7*cosh(2*sqrt(42)*x) - sqrt(42)*sinh(2*sqrt(42)*x))*exp(13*x) - 1. - Franck Maminirina Ramaharo, Jan 07 2019
Extensions
More terms from Philippe Deléham, Sep 19 2009; corrected by N. J. A. Sloane, Sep 20 2009
Additional term from Colin Barker, Feb 20 2014
Comments