A153208 Primes of the form 2*p-1 where p is prime and p-1 is not squarefree.
37, 73, 193, 313, 397, 457, 541, 613, 673, 757, 1153, 1201, 1321, 1453, 1621, 1657, 1753, 1873, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2857, 2917, 3061, 3217, 3313, 4057, 4177, 4273, 4357, 4441, 4561, 4933, 5077, 5101, 5113, 5233, 5437, 5581, 5701
Offset: 1
Keywords
Examples
For p = 2 (the only case with p-1 odd), 2*p-1 = 3 is prime but p-1 = 1 is squarefree, so 3 is not in the sequence. For p = 19, 2*p-1 = 37 is prime and p-1 = 18 is not squarefree, so 37 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[ q: p in PrimesUpTo(2900) | not IsSquarefree(p-1) and IsPrime(q) where q is 2*p-1 ];
-
Maple
R:= NULL; count:= 0: p:= 3: while count < 100 do p:= nextprime(p); if isprime(2*p-1) and not numtheory:-issqrfree(p-1) then R:= R, 2*p-1; count:= count+1; fi od: R; # Robert Israel, Nov 22 2023
-
Mathematica
lst={}; Do[p = Prime[n]; If[ !SquareFreeQ[Floor[p/2]] && PrimeQ[Ceiling[p/2]], AppendTo[lst, p]], {n, 7!}]; lst Select[2#-1&/@Select[Prime[Range[1000]],!SquareFreeQ[#-1]&],PrimeQ] (* Harvey P. Dale, Aug 11 2024 *)
Extensions
Edited by Klaus Brockhaus, Dec 24 2008
Mathematica updated by Jean-François Alcover, Jul 04 2013
Comments