cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153295 G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 4, 20, 110, 638, 3828, 23515, 146972, 930869, 5958094, 38462190, 250054804, 1635421543, 10750864640, 70987129653, 470542935654, 3129729034478, 20880459397920, 139689406647522, 936832986074664, 6297064070279195
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^2) = 1 + x + 4*x^2 + 20*x^3 + 110*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 276*x^4 + 1656*x^5 +...
G(x)^2*A(x)^2 = 1 + 4*x + 20*x^2 + 110*x^3 + 638*x^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(3n-k,n-k)*2k/(3n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^2*A(x)^2 where G(x) is the g.f. of A001764.
G.f. satisfies: A(x/F(x)) = F(x*F(x)) where F(x) is the g.f. of A000108 (Catalan).
From Alexander Burstein, Nov 23 2019: (Start)
G.f. satisfies: A(x) = 1 + x*G(x)^3*m(x*G(x)^3), where m(x) is the g.f. of A001006 (Motzkin numbers) and G(x) is the g.f. of A001764 (ternary trees).
G.f. satisfies: A(-x*A(x)^7) = 1/A(x). (End)