cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A153298 G.f.: A(x) = F(x*G(x)^3)^2 = F(G(x)-1)^2 where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 2, 11, 68, 443, 2974, 20361, 141356, 991738, 7015814, 49967892, 357896120, 2575844046, 18616823352, 135051785186, 982949932092, 7175591019313, 52524480778590, 385429134781530, 2834791998208500, 20893844524709649
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^3)^2 = 1 + 2*x + 11*x^2 + 68*x^3 + 443*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+2,k)*2/(2*k+2)*binomial(3*(n-k)+3*k,n-k)*3*k/(3*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+2,k)/(k+1) * C(3n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x/F(x)) = F(x*F(x)^2)^2 where F(x) is the g.f. of A000108.

A153390 G.f.: A(x) = F(x*G(x))^2 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).

Original entry on oeis.org

1, 2, 9, 48, 278, 1696, 10736, 69886, 465019, 3149476, 21643433, 150554144, 1058101315, 7502183626, 53599160532, 385494328218, 2788827078507, 20280590381098, 148167425970522, 1087007419753186, 8004683588800899
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x))^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 278*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+2,k)*2/(3*k+2)*binomial(2*(n-k)+k,n-k)*k/(2*(n-k)+k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+2,k)*2/(3k+2) * C(2n-k,n-k)*k/(2n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x*F(x)) = F(x*F(x)^2)^2 where F(x) is the g.f. of A001764.

A381861 G.f. A(x) satisfies A(x) = (1 + x*A(x))^4 * C(x), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 32, 231, 1797, 14715, 125064, 1093194, 9766783, 88793815, 818832674, 7640868924, 72014955566, 684551660324, 6555290711728, 63179148757584, 612376024087047, 5965515657187437, 58375460484257734, 573545171374958628, 5655759227878768987, 55957005428512022905
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(4*n-4*k+4, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(4*n-4*k+4,n-k)/(n+k+1).
a(n) = binomial(4 + 4*n, n)*hypergeom([-4/3-n, -2/3-n, -n, 1+n], [-3/4-n, -1/2-n, -1/4-n], 3^3/2^8)/(1 + n). - Stefano Spezia, Mar 09 2025
Showing 1-3 of 3 results.