cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A153300 Coefficient of x^(4n)/(4n)! in the Maclaurin expansion of cm4(x), which is a generalization of the Dixon elliptic function cm(x,0) defined by A104134.

Original entry on oeis.org

1, 6, 2268, 7434504, 95227613712, 3354162536029536, 264444869673131894208, 40740588107524550752746624, 11136881432872615930509713801472, 5026062205760019668688216299061782016
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2009

Keywords

Comments

Equals column 0 of triangle A357801.

Examples

			G.f.: cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...
sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...
These functions satisfy: cm4(x)^4 - sm4(x)^4 = 1 where:
cm4(x)^4 = 1 + 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! + 2716743794688*x^16/16 +...
RELATED EXPANSIONS:
cm4(x)^2 = 1 + 12*x^4/4! + 7056*x^8/8! + 28340928*x^12/12! + 419025809664*x^16/16! +...
sm4(x)^2 = 2*x^2/2! + 216*x^6/6! + 368928*x^10/10! + 3000945024*x^14/14! +...
cm4(x)^3 = 1 + 18*x^4/4! + 14364*x^8/8! + 70203672*x^12/12! + 1192064637456*x^16/16! +...
sm4(x)^3 = 6*x^3/3! + 2268*x^7/7! + 7434504*x^11/11! + 95227613712*x^15/15! +...
DERIVATIVES:
d/dx cm4(x) = sm4(x)^3 ;
d^2/dx^2 cm4(x) = 3*cm4(x)^3*sm4(x)^2 ;
d^3/dx^3 cm4(x) = 6*cm4(x)^6*sm4(x) + 9*cm4(x)^2*sm4(x)^5 ;
d^4/dx^4 cm4(x) = 6*cm4(x)^9 + 81*cm4(x)^5*sm4(x)^4 + 18*cm4(x)*sm4(x)^8 ;...
		

Crossrefs

Cf. A104134; A153301, A153302 (cm4(x)^2 + sm4(x)^2).
Cf. A153303 (cm4(x)^4), A357801.

Programs

  • Mathematica
    With[{n = 9}, CoefficientList[Series[JacobiDN[Sqrt[2] x^(1/4), 1/2]/Sqrt[JacobiCN[Sqrt[2] x^(1/4), 1/2]], {x, 0, n}], x] Table[(4 k)!, {k, 0, n}]] (* Jan Mangaldan, Jan 04 2017 *)
  • PARI
    {a(n)=local(A);if(n<0,0,A=x*O(x);for(i=0,n,A=1+intformal(intformal(A^3)^3));n=4*n;n!*polcoeff(A,n))}

Formula

Define sm4(x)^4 = cm4(x)^4 - 1, where sm4(x) is the g.f. of A153301, then:
d/dx cm4(x) = sm4(x)^3 ;
d/dx sm4(x) = cm4(x)^3 .
a(n) ~ 2^(14*n + 11/4) * Gamma(3/4)^(8*n+1) * n^(4*n) / (exp(4*n) * Pi^(6*n + 3/4)). - Vaclav Kotesovec, Oct 06 2019

A153301 Coefficient of x^(4n+1)/(4n+1)! in the Maclaurin expansion of sm4(x), which is a generalization of the Dixon elliptic function sm(x,0) defined by A104133.

Original entry on oeis.org

1, 18, 14364, 70203672, 1192064637456, 52269828456672288, 4930307288899134335424, 884135650165992118901204352, 275721138550891190637445080842496
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2009

Keywords

Comments

Equals column 0 of triangle A357800.

Examples

			G.f.: sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...
cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...
These functions satisfy: cm4(x)^4 - sm4(x)^4 = 1 where:
sm4(x)^4 = 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! + 2716743794688*x^16/16! +...
RELATED EXPANSIONS:
sm4(x)^2 = 2*x^2/2! + 216*x^6/6! + 368928*x^10/10! + 3000945024*x^14/14! +...
cm4(x)^2 = 1 + 12*x^4/4! + 7056*x^8/8! + 28340928*x^12/12! + 419025809664*x^16/16! +...
sm4(x)^3 = 6*x^3/3! + 2268*x^7/7! + 7434504*x^11/11! + 95227613712*x^15/15! +...
cm4(x)^3 = 1 + 18*x^4/4! + 14364*x^8/8! + 70203672*x^12/12! + 1192064637456*x^16/16! +...
DERIVATIVES:
d/dx sm4(x) = cm4(x)^3 ;
d^2/dx^2 sm4(x) = 3*sm4(x)^3*cm4(x)^2 ;
d^3/dx^3 sm4(x) = 6*sm4(x)^6*cm4(x) + 9*sm4(x)^2*cm4(x)^5 ;
d^4/dx^4 sm4(x) = 6*sm4(x)^9 + 81*sm4(x)^5*cm4(x)^4 + 18*sm4(x)*cm4(x)^8 ;...
		

Crossrefs

Cf. A104133; A153300, A153302 (cm4(x)^2 + sm4(x)^2).
Cf. A357800.

Programs

  • Mathematica
    With[{n = 8}, CoefficientList[Series[JacobiSN[Sqrt[2] x^(1/4), 1/2]/(x^(1/4) Sqrt[2 JacobiCN[Sqrt[2] x^(1/4), 1/2]]), {x, 0, n}], x] Table[(4 k + 1)!, {k, 0, n}]] (* Jan Mangaldan, Jan 04 2017 *)
  • PARI
    {a(n)=local(A);if(n<0,0,A=x*O(x);for(i=0,n,A=intformal((1+intformal(A^3))^3));n=4*n+1;n!*polcoeff(A,n))}

Formula

Define cm4(x)^4 = 1 + sm4(x)^4, where cm4(x) is the g.f. of A153300, then:
d/dx sm4(x) = cm4(x)^3 ;
d/dx cm4(x) = sm4(x)^3 .

A290879 E.g.f. L(x) of aerated sequence satisfies: L(x) = Integral 1 / sqrt( cosh(2*L(x)) ) dx.

Original entry on oeis.org

1, -2, 44, -2840, 367760, -79719200, 26016555200, -11921650083200, 7300922254496000, -5759532173685056000, 5688335131502291840000, -6875441991877610827520000, 9983390897443366347676160000, -17148197258942716354314368000000, 34392433372153876998446324480000000, -79646680171456811546338888517120000000, 210930739548407111241584046599398400000000
Offset: 1

Views

Author

Paul D. Hanna, Aug 13 2017

Keywords

Examples

			E.g.f.: L(x) = x - 2*x^3/3! + 44*x^5/5! - 2840*x^7/7! + 367760*x^9/9! - 79719200*x^11/11! + 26016555200*x^13/13! - 11921650083200*x^15/15! + 7300922254496000*x^17/17! - 5759532173685056000*x^19/19! + 5688335131502291840000*x^21/21! +...
where
1/sqrt( cosh(2*L(x)) ) = 1 - 2*x^2/2! + 44*x^4/4! - 2840*x^6/6! + 367760*x^8/8! - 79719200*x^10/10! + 26016555200*x^12/12! - 11921650083200*x^14/14! +...
		

Crossrefs

Programs

  • Maple
    Q:= series(Int(sqrt(cosh(2*t)),t),t,100):
    S:= series(RootOf(Q-y,t),y,100):
    seq(coeff(S,y,j)*j!,j=1..100,2); # Robert Israel, Aug 13 2017
  • Mathematica
    terms = 17; m = 2 terms; cc = CoefficientList[InverseSeries[Integrate[Sqrt[ Cosh[2 x]] + O[x]^m, x], x], x]; DeleteCases[cc * Range[0, m-1]!, 0] (* Jean-François Alcover, Apr 02 2019 *)
  • PARI
    {a(n) = my(L=x); for(i=1,n, L = intformal( 1/sqrt(cosh(2*L + O(x^(2*n+2)))) )); (2*n-1)!*polcoeff(L,2*n-1)}
    for(n=1,20, print1(a(n),", "))
    
  • PARI
    {a(n) = my(L=x); L = serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) )); (2*n-1)!*polcoeff(L,2*n-1)}
    for(n=1,20, print1(a(n),", "))

Formula

E.g.f.: L(x) = Series_Reversion( Integral sqrt( cosh(2*x) ) dx ).
Let C(x) and S(x) be the e.g.f.s of A290880 and A290881, respectively, then e.g.f. L(x) satisfies:
(1) L(x) = log(C(x) + S(x)),
(2) cosh(2*L(x)) = C(x)^2 + S(x)^2,
(3) cosh(L(x)) = C(x) and sinh(L(x)) = S(x),
where C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.

A290880 E.g.f. C(x) satisfies: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where S(x) is the e.g.f. of A290881.

Original entry on oeis.org

1, 1, -7, 265, -24175, 4037425, -1070526775, 412826556025, -218150106913375, 151297155973926625, -133288452772763494375, 145378048431548466795625, -192296944484564858674279375, 303266384253858232005535140625, -562167814015907092875287424484375, 1210147640238238850996978598797265625, -2993757681527630470101347134338702109375
Offset: 0

Views

Author

Paul D. Hanna, Aug 13 2017

Keywords

Examples

			E.g.f.: C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
such that C(x)^2 - S(x)^2 = 1 where S(x) begins:
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(2*n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); (2*n)!*polcoeff(C,2*n)}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    {a(n) = my(C=1); C = cosh( serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) )); (2*n)!*polcoeff(C,2*n)}
    for(n=0,20, print1(a(n),", "))

Formula

E.g.f.: C(x) = cosh( Series_Reversion( Integral sqrt( cosh(2*x) ) dx ) ).
Let S(x) be the e.g.f. of A290881, then:
(1) C'(x) = S(x) / sqrt(C(x)^2 + S(x)^2).
(2) S'(x) = C(x) / sqrt(C(x)^2 + S(x)^2).
such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.

A290881 E.g.f. S(x) satisfies: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880.

Original entry on oeis.org

1, -1, 25, -1705, 227665, -50333425, 16655398825, -7711225809625, 4760499335502625, -3779764853639958625, 3752942823715824285625, -4556465805050372544735625, 6641455313355871353308640625, -11445605320939175012746492140625, 23021828780691053491298409381015625, -53450977127256739279274500814544765625
Offset: 1

Views

Author

Paul D. Hanna, Aug 13 2017

Keywords

Examples

			E.g.f.: S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
such that C(x)^2 - S(x)^2 = 1 where C(x) begins:
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(2*n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); (2*n-1)!*polcoeff(S,2*n-1)}
    for(n=1,20, print1(a(n),", "))
    
  • PARI
    {a(n) = my(C=1); S = serreverse( intformal( sqrt( (1+2*x^2) / (1+x^2 + O(x^(2*n+2))) ) )); (2*n-1)!*polcoeff(S,2*n-1)}
    for(n=1,20, print1(a(n),", "))
    
  • PARI
    {a(n) = my(S=x); S = sinh( serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) )); (2*n-1)!*polcoeff(S,2*n-1)}
    for(n=1,20, print1(a(n),", "))

Formula

E.g.f.: S(x) = Series_Reversion( Integral sqrt( (1 + 2*x^2) / (1 + x^2) ) dx ).
E.g.f.: S(x) = sinh( Series_Reversion( Integral sqrt( cosh(2*x) ) dx ) ).
Let C(x) be the e.g.f. of A290880, then:
(1) C'(x) = S(x) / sqrt(C(x)^2 + S(x)^2),
(2) S'(x) = C(x) / sqrt(C(x)^2 + S(x)^2),
such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.

A290883 E.g.f. A(x) = sqrt(C(x)^2 + S(x)^2) such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880 and S(x) is the e.g.f. of A290881.

Original entry on oeis.org

1, 2, -20, 920, -95600, 17588000, -5034785600, 2068322672000, -1153339941728000, 838147215114560000, -769492266756037760000, 870869784123573927680000, -1191080747725445120960000000, 1936606018449416970940544000000, -3692030834904045806243452160000000, 8156631422332715861303860160000000000, -20671774666617006397027638099614720000000
Offset: 0

Views

Author

Paul D. Hanna, Aug 13 2017

Keywords

Comments

Conjecture: If p is a prime congruent to 1 mod 4 and k is a positive integer, then p^k divides a(n) for n >= (k/2)*p-1. Furthermore, if p^k divides (2n+2)!, then p^k divides a(n). - Andrew Slattery, Aug 21 2022

Examples

			E.g.f.: A(x) = 1 + 2*x^2/2! - 20*x^4/4! + 920*x^6/6! - 95600*x^8/8! + 17588000*x^10/10! - 5034785600*x^12/12! + 2068322672000*x^14/14! - 1153339941728000*x^16/16! + 838147215114560000*x^18/18! +...
such that A(x) = sqrt(C(x)^2 + S(x)^2) where series C(x) and S(x) begin:
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
These series satisfy: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); n!*polcoeff(C + S,n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(E=1); A = sqrt( cosh( 2*serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) ))); (2*n)!*polcoeff(A,2*n)}
    for(n=0,30, print1(a(n),", "))

Formula

E.g.f.: A(x) = sqrt( cosh( 2*Series_Reversion( Integral sqrt( cosh(2*x) ) dx ) ) ).

A292181 E.g.f. A(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that A'(x) = A(x) + B(x)*C(x).

Original entry on oeis.org

1, 3, 10, 45, 259, 1806, 14827, 140367, 1504576, 17972559, 236275711, 3387012720, 52572376669, 878552787927, 15729439074058, 300400031036745, 6095885898471775, 130982551821899862, 2970844882925223487, 70929401617621416243, 1778125633605205346584, 46698342082602696345555, 1282168260097348871508667, 36734284970419645262875200, 1096293296048734274708523433, 34026339905854090378353208155
Offset: 1

Views

Author

Paul D. Hanna, Sep 10 2017

Keywords

Comments

Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively.
Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x).

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +...
where A(x) = Integral A(x) + B(x)*C(x) dx.
RELATED SERIES.
B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +...
where B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +...
where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
Squares of series.
A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +...
where A(x)^2 + B(x)^2 = C(x)^2.
B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +...
where B(x)^2 - A(x)^2 = exp(2*x).
C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +...
where C(x)^2 - 2*A(x)^2 = exp(2*x).
		

Crossrefs

Cf. A292182 (B), A292183 (C).

Programs

  • PARI
    {a(n) = my(A=x,B=1,C=1); for(i=0,n, A = intformal(A + B*C + x*O(x^n));
    B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

E.g.f. A(x) and related functions B(x) and C(x) satisfy:
(1a) A(x)^2 + B(x)^2 = C(x)^2.
(1b) B(x)^2 - A(x)^2 = exp(x)^2.
(1c) C(x)^2 - 2*A(x)^2 = exp(x)^2.
(2a) A(x) = Integral A(x) + B(x)*C(x) dx.
(2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
(2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
(3a) A(x) = exp(x) * sinh( Integral C(x) dx ).
(3b) B(x) = exp(x) * cosh( Integral C(x) dx ).
(3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx).
(3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2).
(4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ).
(4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ).
(4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ).
(5a) B(x) + i*A(x) = C(x) * exp( i*atan( A(x)/B(x) ) ).
(5b) A(x)/B(x) = Series_Reversion( Integral 1/( sqrt(1-x^4) * (1 + Integral 1/sqrt(1-x^4) dx) ) dx ).
Limit A292182(n)/A292181(n) = 1.
Limit A292183(n)/A292181(n) = sqrt(2).

A292182 E.g.f. B(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that B'(x) = B(x) + A(x)*C(x).

Original entry on oeis.org

1, 1, 2, 7, 35, 226, 1715, 14701, 141248, 1515661, 18048527, 236581984, 3386091821, 52533799501, 877993866290, 15723411375931, 300349139257727, 6095613429234730, 130983518612114231, 2970900143887175977, 70930381205350706888, 1778137090832694851161, 46698407537794612100459, 1282167191852237842607584, 36734238381564939631425737, 1096292258727541156091352361, 34026322932421876848090674594
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2017

Keywords

Comments

Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively.
Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x).

Examples

			E.g.f.: B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +...
where B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
RELATED SERIES.
A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +...
where A(x) = Integral A(x) + B(x)*C(x) dx.
C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +...
where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
Squares of series.
A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +...
where A(x)^2 + B(x)^2 = C(x)^2.
B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +...
where B(x)^2 - A(x)^2 = exp(2*x).
C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +...
where C(x)^2 - 2*A(x)^2 = exp(2*x).
		

Crossrefs

Cf. A292181 (A), A292183 (C).

Programs

  • PARI
    {a(n) = my(A=x,B=1,C=1); for(i=0,n, A = intformal(A + B*C + x*O(x^n));
    B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(B,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f. B(x) and related functions A(x) and C(x) satisfy:
(1a) A(x)^2 + B(x)^2 = C(x)^2.
(1b) B(x)^2 - A(x)^2 = exp(x)^2.
(1c) C(x)^2 - 2*A(x)^2 = exp(x)^2.
(2a) A(x) = Integral A(x) + B(x)*C(x) dx.
(2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
(2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
(3a) A(x) = exp(x) * sinh( Integral C(x) dx ).
(3b) B(x) = exp(x) * cosh( Integral C(x) dx ).
(3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx).
(3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2).
(4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ).
(4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ).
(4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ).
Limit A292181(n)/A292182(n) = 1.
Limit A292183(n)/A292182(n) = sqrt(2).

A292183 E.g.f. C(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that C'(x) = C(x) + 2*A(x)*B(x).

Original entry on oeis.org

1, 1, 3, 13, 63, 361, 2499, 20581, 196311, 2116561, 25357563, 333765037, 4787007855, 74323701817, 1242253733619, 22243082373301, 424815246293319, 8620744969300321, 185235767397027627, 4201390722798810493, 100309092062158564959, 2514646421630798317897, 66041388198395188082595, 1813259146315114344920581, 51950114633383773360554679, 1550392693763071812557794801, 48120508780248064233484223067
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2017

Keywords

Comments

Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively.
Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x).

Examples

			E.g.f.: C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +...
where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
RELATED SERIES.
A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +...
where A(x) = Integral A(x) + B(x)*C(x) dx.
B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +...
where B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
Squares of series.
A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +...
where A(x)^2 + B(x)^2 = C(x)^2.
B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +...
where B(x)^2 - A(x)^2 = exp(2*x).
C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +...
where C(x)^2 - 2*A(x)^2 = exp(2*x).
		

Crossrefs

Cf. A292181 (A), A292182 (B).

Programs

  • PARI
    {a(n) = my(A=x,B=1,C=1); for(i=0,n, A = intformal(A + B*C + x*O(x^n));
    B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(C,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f. C(x) and related functions A(x) and B(x) satisfy:
(1a) A(x)^2 + B(x)^2 = C(x)^2.
(1b) B(x)^2 - A(x)^2 = exp(x)^2.
(1c) C(x)^2 - 2*A(x)^2 = exp(x)^2.
(2a) A(x) = Integral A(x) + B(x)*C(x) dx.
(2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
(2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
(3a) A(x) = exp(x) * sinh( Integral C(x) dx ).
(3b) B(x) = exp(x) * cosh( Integral C(x) dx ).
(3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx).
(3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2).
(4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ).
(4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ).
(4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ).
Limit A292183(n)/A292181(n) = sqrt(2).
Limit A292183(n)/A292182(n) = sqrt(2).

A153303 G.f.: cm4(x)^4 = Sum_{n>=0} a(n)*x^(4n)/(4n)!, where cm4(x) is defined by A153300.

Original entry on oeis.org

1, 24, 24192, 140507136, 2716743794688, 132091533948616704, 13574624941450494738432, 2619220630292562698311827456, 870703020893737265865222361448448
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2009

Keywords

Examples

			G.f.: cm4(x)^4 = 1 + 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! +...
The functions:
cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...
sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...
satisfy:
cm4(x)^4 - sm4(x)^4 = 1 ;
d/dx cm4(x) = sm4(x)^3 ;
d/dx sm4(x) = cm4(x)^3 .
		

Crossrefs

Cf. A153300 (cm4(x)), A153301 (sm4(x)), A153302 (cm4(x)^2+sm4(x)^2).

Programs

  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x); for(i=0, n, A=1+intformal(intformal(A^3)^3)); n=4*n; n!*polcoeff(A^4, n))}

Formula

Conjecture: a(n)/2^(4n-1) is an odd integer for n>0.
Showing 1-10 of 10 results.