cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153349 Period 6: repeat [1, 7, 4, 4, 7, 1].

Original entry on oeis.org

1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4, 4, 7, 1, 1, 7, 4
Offset: 0

Views

Author

Paul Curtz, Dec 24 2008

Keywords

Comments

Also: the decimal expansion of 5287/30303. [R. J. Mathar, Jan 03 2009]

Crossrefs

Programs

Formula

G.f.: (x^4+6*x^3-2*x^2+6*x+1)/((1-x)*(x^2-x+1)*(1+x+x^2)). a(n) = 4 + 3*A099837(n+2)/2 + 3*A010892(n+4)/2. [R. J. Mathar, Jan 03 2009]
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (8 - 3*cos(n*Pi/3) - 3*cos(2*n*Pi/3) + sqrt(3)*sin(n*Pi/3) + 3*sqrt(3)*sin(2*n*Pi/3))/2. (End)

Extensions

Extended by R. J. Mathar, Jan 03 2009