cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A220062 Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 4, 2, 0, 0, 1, 5, 6, 6, 2, 0, 0, 1, 6, 8, 10, 8, 2, 0, 0, 1, 7, 10, 14, 16, 12, 2, 0, 0, 1, 8, 12, 18, 24, 26, 16, 2, 0, 0, 1, 9, 14, 22, 32, 42, 42, 24, 2, 0, 0, 1, 10, 16, 26, 40, 58, 72, 68, 32, 2, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Dec 03 2012

Keywords

Comments

Equivalently, the number of walks of length n-1 on the path graph P_k. - Andrew Howroyd, Apr 17 2017

Examples

			A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc.
Square array A(n,k) begins:
  1,  1,  1,  1,  1,   1,   1,   1, ...
  0,  1,  2,  3,  4,   5,   6,   7, ...
  0,  0,  2,  4,  6,   8,  10,  12, ...
  0,  0,  2,  6, 10,  14,  18,  22, ...
  0,  0,  2,  8, 16,  24,  32,  40, ...
  0,  0,  2, 12, 26,  42,  58,  74, ...
  0,  0,  2, 16, 42,  72, 104, 136, ...
  0,  0,  2, 24, 68, 126, 188, 252, ...
		

Crossrefs

Columns k=0, 2-10 give: A000007, A040000, A029744(n+2) for n>0, A006355(n+3) for n>0, A090993(n+1) for n>0, A090995(n-1) for n>2, A129639, A153340, A153362, A153360.
Rows 0-6 give: A000012, A001477, A005843(k-1) for k>0, A016825(k-2) for k>1, A008590(k-2) for k>2, A113770(k-2) for k>3, A063164(k-2) for k>4.
Main diagonal gives: A102699.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-1, j, k), j=1..k),
          `if`(i>1, b(n-1, i-1, k), 0)+
          `if`(i b(n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
  • PARI
    TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
    ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z);
    a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1];
    for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); );
    \\ Andrew Howroyd, Apr 17 2017
Showing 1-1 of 1 results.