cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A153368 Number of zig-zag paths from top to bottom of a rectangle of width 11 with n rows.

Original entry on oeis.org

11, 20, 38, 72, 138, 264, 508, 976, 1882, 3624, 6996, 13488, 26054, 50264, 97124, 187440, 362250, 699240, 1351492, 2609008, 5042950, 9735768, 18818772, 36332016, 70229066, 135588200, 262091348, 506012592, 978124038, 1888445784, 3650380228
Offset: 1

Views

Author

Joseph Myers, Dec 24 2008

Keywords

Comments

Heuristically, a(n) = +6*a(n-2) -9*a(n-4) +2*a(n-6). - R. J. Mathar, Jun 16 2011
Number of words of length n using a 11 symbol alphabet where neighboring letters are neighbors in the alphabet. - Andrew Howroyd, Apr 17 2017

Crossrefs

Column 11 of A220062.
Cf. A153369, A153370, A153371, A153372 (bisection), A153373.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n - 1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jul 01 2018, after Alois P. Heinz *)

Formula

Empirical G.f.: x*(11+20*x-28*x^2-48*x^3+9*x^4+12*x^5)/((1-2*x^2)*(1-4*x^2+x^4)). - Colin Barker, Apr 17 2012
a(n) = A153369(n) + A153370(n). - Andrew Howroyd, Apr 17 2017

A153373 Number of zig-zag paths from top to bottom of a rectangle of width 11 with 2n-1 rows whose color is not that of the top right corner.

Original entry on oeis.org

5, 18, 66, 244, 906, 3372, 12566, 46860, 174810, 652252, 2433942, 9083004, 33897050, 126503148, 472111446, 1761934444, 6575609946, 24540472572, 91586214806, 341804255580, 1275630545370, 4760717401612, 17767238012502
Offset: 1

Views

Author

Joseph Myers, Dec 24 2008

Keywords

Crossrefs

Formula

Empirical G.f.: x*(5-12*x+3*x^2)/(1-6*x+9*x^2-2*x^3). - Colin Barker, Jan 04 2012

A153369 Number of zig-zag paths from top to bottom of a rectangle of width 11 with n rows whose color is that of the top right corner.

Original entry on oeis.org

6, 10, 20, 36, 72, 132, 264, 488, 976, 1812, 3624, 6744, 13488, 25132, 50264, 93720, 187440, 349620, 699240, 1304504, 2609008, 4867884, 9735768, 18166008, 36332016, 67794100, 135588200, 253006296, 506012592, 944222892, 1888445784, 3523868888
Offset: 1

Views

Author

Joseph Myers, Dec 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-9,0,2},{6,10,20,36,72,132},40] (* Harvey P. Dale, Sep 25 2024 *)

Formula

Empirically, g.f. -2*x*(3+5*x-8*x^2-12*x^3+3*x^4+3*x^5) / ( (2*x^2-1)*(x^4-4*x^2+1) ) with a(n)= +6*a(n-2) -9*a(n-4) +2*a(n-6). - R. J. Mathar, Jun 16 2011

A153370 Number of zig-zag paths from top to bottom of a rectangle of width 11 with n rows whose color is not that of the top right corner.

Original entry on oeis.org

5, 10, 18, 36, 66, 132, 244, 488, 906, 1812, 3372, 6744, 12566, 25132, 46860, 93720, 174810, 349620, 652252, 1304504, 2433942, 4867884, 9083004, 18166008, 33897050, 67794100, 126503148, 253006296, 472111446, 944222892, 1761934444, 3523868888
Offset: 1

Views

Author

Joseph Myers, Dec 24 2008

Keywords

Crossrefs

Formula

Empirical: G.f. -x*(2*x+1)*(3*x^4-12*x^2+5) / ( (2*x^2-1)*(x^4-4*x^2+1) ) and a(n)= +6*a(n-2) -9*a(n-4) +2*a(n-6). - R. J. Mathar, Jun 16 2011

A153371 Number of zig-zag paths from top to bottom of a rectangle of width 11 with 2n rows whose color is that of the top right corner.

Original entry on oeis.org

10, 36, 132, 488, 1812, 6744, 25132, 93720, 349620, 1304504, 4867884, 18166008, 67794100, 253006296, 944222892, 3523868888, 13151219892, 49080945144, 183172429612, 683608511160, 2551261090740, 9521434803224, 35534476025004
Offset: 1

Views

Author

Joseph Myers, Dec 24 2008

Keywords

Crossrefs

Formula

Empirical: G.f. -2*x*(5-12*x+3*x^2) / ( (2*x-1)*(x^2-4*x+1) ) with a(n)= +6*a(n-1) -9*a(n-2) +2*a(n-3) and a(n) = (2^n+4*A001075(n+1))/3. - R. J. Mathar, Jun 16 2011
Showing 1-5 of 5 results.