A153402 Smaller of 3 consecutive prime numbers such that p1*p2*p3+d1+d2-1=average of twin prime pairs, d1(delta)=p2-p1,d2(delta)=p3-p2.
3, 569, 1747, 5107, 6947, 9281, 11027, 14389, 24851, 25169, 26189, 31153, 34469, 41687, 42391, 45281, 61091, 62507, 80603, 82139, 89989, 91967, 92333, 93809, 98369, 98873, 103583, 105899, 111347, 117127, 120977, 122819, 128411, 135601
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3+d1+d2-1;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p1]],{n,8!}];lst s3cpQ[{a_,b_,c_}]:=Module[{tp=a*b*c+(c-a)-1},AllTrue[tp+{1,-1},PrimeQ]]; Select[ Partition[Prime[Range[15000]],3,1],s3cpQ][[All,1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 01 2018 *)
Comments