A153406
Smallest of 3 consecutive prime numbers such that p1*p2*p3+d1+d2+1=average of twin prime pairs, d1(delta)=p2-p1,d2(delta)=p3-p2.
Original entry on oeis.org
4813, 9007, 13831, 33791, 35023, 48337, 51577, 52153, 61297, 62207, 77743, 95107, 102607, 105137, 105673, 109663, 111767, 114781, 119747, 128221, 135367, 136727, 138679, 149197, 153949, 159787, 163199, 165437, 174829, 188677, 195973, 208009
Offset: 1
-
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3+d1+d2+1;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p1]],{n,8!}];lst
s3cpnQ[n_]:=Module[{c=Times@@n+Total[Differences[n]]+1},AllTrue[c+{1,-1}, PrimeQ]]; Transpose[Select[Partition[ Prime[Range[ 20000]],3,1], s3cpnQ]] [[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 05 2014 *)
A153407
Middle of 3 consecutive prime numbers such that p1*p2*p3+d1+d2+1=average of twin prime pairs, d1(delta)=p2-p1,d2(delta)=p3-p2.
Original entry on oeis.org
4817, 9011, 13841, 33797, 35027, 48341, 51581, 52163, 61331, 62213, 77747, 95111, 102611, 105143, 105683, 109673, 111773, 114797, 119759, 128237, 135389, 136733, 138683, 149213, 153953, 159791, 163211, 165443, 174851, 188681, 195977, 208037
Offset: 1
Cf.
A099349,
A153374,
A153375,
A153376,
A153377,
A153378,
A153379,
A153402,
A153404,
A153405,
A153406
-
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3+d1+d2+1;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p2]],{n,8!}];lst
cnpQ[{a_,b_,c_}]:=Module[{p=a*b*c+(b-a)+(c-b)+1},And@@PrimeQ[p+{1,-1}]]; Transpose[Select[Partition[Prime[Range[20000]],3,1],cpnQ]][[2]] (* Harvey P. Dale, Jul 30 2013 *)
A153408
Largest of 3 consecutive prime numbers such that p1*p2*p3 + d1 + d2 + 1 = average of twin prime pairs, d1 (delta) = p2 - p1, d2 (delta) = p3 - p2.
Original entry on oeis.org
4831, 9013, 13859, 33809, 35051, 48353, 51593, 52177, 61333, 62219, 77761, 95131, 102643, 105167, 105691, 109717, 111779, 114799, 119771, 128239, 135391, 136739, 138727, 149239, 153991, 159793, 163223, 165449, 174859, 188687, 195991, 208049
Offset: 1
4813*4817*4831 + 4 + 14 = 112002971670 and 112002971670 +- 1 are primes.
Cf.
A099349,
A153374,
A153375,
A153376,
A153377,
A153378,
A153379,
A153402,
A153404,
A153405,
A153406,
A153407.
-
[NthPrime(k+2):k in [1..20000]| IsPrime(q-1) and IsPrime(q+1) where q is NthPrime(k)* NthPrime(k+1)* NthPrime(k+2)+ NthPrime(k+2)- NthPrime(k)+1]; // Marius A. Burtea, Dec 22 2019
-
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3+d1+d2+1;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p3]],{n,8!}];lst
Select[Partition[Prime[Range[20000]],3,1],AllTrue[Times@@#+Total[ Differences[ #]]+ {2,0},PrimeQ]&][[All,3]] (* Harvey P. Dale, Apr 22 2022 *)
A153404
Middle of 3 consecutive prime numbers such that p1*p2*p3 + d1 + d2 - 1 = average of twin prime pairs, d1 (delta) = p2 - p1, d2 (delta) = p3 - p2.
Original entry on oeis.org
5, 571, 1753, 5113, 6949, 9283, 11047, 14401, 24859, 25171, 26203, 31159, 34471, 41719, 42397, 45289, 61099, 62533, 80611, 82141, 90001, 91969, 92347, 93811, 98377, 98887, 103591, 105907, 111373, 117133, 120997, 122827, 128413, 135607
Offset: 1
3*5*7 + 2 + 2 - 1 = 108 and 108 +- 1 are primes.
-
lst={};Do[p1=Prime[n];p2=Prime[n+1];p3=Prime[n+2];d1=p2-p1;d2=p3-p2;a=p1*p2*p3+d1+d2-1;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p2]],{n,8!}];lst
A153405
Larger of 3 consecutive prime numbers such that p1*p2*p3 + d1 + d2 - 1 = average of twin prime pairs, d1 (delta) = p2 - p1, d2 (delta) = p3 - p2.
Original entry on oeis.org
7, 577, 1759, 5119, 6959, 9293, 11057, 14407, 24877, 25183, 26209, 31177, 34483, 41729, 42403, 45293, 61121, 62539, 80621, 82153, 90007, 91997, 92353, 93827, 98387, 98893, 103613, 105913, 111409, 117163, 121001, 122833, 128431, 135613
Offset: 1
7 is a term since (3, 5, 7) are consecutive primes, 3*5*7 + 2 + 2 - 1 = 108, and 108 +-1 = are twin primes.
-
[p3:k in [1..14000]| IsPrime(p1*p2*p3+p3-p1-2) and IsPrime(p1*p2*p3+p3-p1) where p1 is NthPrime(k) where p2 is NthPrime(k+1) where p3 is NthPrime(k+2) ]; // Marius A. Burtea, Dec 31 2019
-
lst = {}; Do[p1 = Prime[n]; p2 = Prime[n + 1]; p3 = Prime[n + 2]; d1 = p2 -p1; d2 = p3 - p2; a = p1 * p2 * p3 + d1 + d2 - 1; If[PrimeQ[a - 1] && PrimeQ[a + 1], AppendTo[lst, p3]], {n, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky *)
okQ[{a_, b_, c_}] := Module[{x = a b c + (b - a) + (c - b) - 1}, PrimeQ[x - 1] && PrimeQ[x + 1]]
Transpose[Select[Partition[Prime[Range[15000]], 3, 1], okQ]][[3]] (* Harvey P. Dale, Jan 18 2011 *)
Showing 1-5 of 5 results.
Comments