cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153405 Larger of 3 consecutive prime numbers such that p1*p2*p3 + d1 + d2 - 1 = average of twin prime pairs, d1 (delta) = p2 - p1, d2 (delta) = p3 - p2.

Original entry on oeis.org

7, 577, 1759, 5119, 6959, 9293, 11057, 14407, 24877, 25183, 26209, 31177, 34483, 41729, 42403, 45293, 61121, 62539, 80621, 82153, 90007, 91997, 92353, 93827, 98387, 98893, 103613, 105913, 111409, 117163, 121001, 122833, 128431, 135613
Offset: 1

Views

Author

Keywords

Examples

			7 is a term since (3, 5, 7) are consecutive primes, 3*5*7 + 2 + 2 - 1 = 108, and 108 +-1 = are twin primes.
		

Crossrefs

Programs

  • Magma
    [p3:k in [1..14000]| IsPrime(p1*p2*p3+p3-p1-2) and IsPrime(p1*p2*p3+p3-p1) where p1 is NthPrime(k) where p2 is NthPrime(k+1) where p3 is NthPrime(k+2) ]; // Marius A. Burtea, Dec 31 2019
  • Mathematica
    lst = {}; Do[p1 = Prime[n]; p2 = Prime[n + 1]; p3 = Prime[n + 2]; d1 = p2 -p1; d2 = p3 - p2; a = p1 * p2 * p3 + d1 + d2 - 1; If[PrimeQ[a - 1] && PrimeQ[a + 1], AppendTo[lst, p3]], {n, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky *)
    okQ[{a_, b_, c_}] := Module[{x = a b c + (b - a) + (c - b) - 1}, PrimeQ[x - 1] && PrimeQ[x + 1]]
    Transpose[Select[Partition[Prime[Range[15000]], 3, 1], okQ]][[3]] (* Harvey P. Dale, Jan 18 2011 *)