cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153415 Decimal expansion of Sum_{n>=1} 1/A000032(2*n).

Original entry on oeis.org

5, 6, 6, 1, 7, 7, 6, 7, 5, 8, 1, 1, 3, 8, 4, 5, 5, 0, 2, 7, 5, 9, 2, 9, 3, 2, 1, 2, 1, 2, 0, 6, 2, 0, 0, 3, 7, 3, 6, 1, 4, 4, 1, 9, 7, 8, 6, 5, 9, 0, 5, 5, 7, 0, 4, 9, 2, 3, 4, 4, 4, 1, 3, 2, 5, 4, 5, 7, 5, 5, 5, 4, 5, 3, 0, 2, 0, 8, 6, 8, 5, 6, 1, 4, 8, 5, 5, 6, 7, 8, 4, 2, 1, 8, 1, 8, 3, 2, 6, 6, 4, 6, 1, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Comments

From Peter Bala, Oct 15 2019: (Start)
c = (1/4)*(theta_3( (3-sqrt(5))/2 )^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A056854.
Series acceleration formulas (L(n) = A000032(n)):
c = 1 - 5*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 - 5) ).
c = (1/6) + 15*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 + 5) ).
c = (11/16) - 10*Sum_{n >= 1} (L(2*n)^2 - 10)/( L(2*n)*(L(2*n)^2 - 5)*(L(2*n)^2 - 20) ). (End)
Compare with Sum_{n >= 1} 1/(L(2*n) - sqrt(5)) = phi and Sum_{n >= 1} 1/(L(2*n) + sqrt(5)) = 2 - phi, where phi = (sqrt(5) + 1)/2. - Peter Bala, Nov 23 2019
This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			0.56617767581138455027...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

Programs