A153415 Decimal expansion of Sum_{n>=1} 1/A000032(2*n).
5, 6, 6, 1, 7, 7, 6, 7, 5, 8, 1, 1, 3, 8, 4, 5, 5, 0, 2, 7, 5, 9, 2, 9, 3, 2, 1, 2, 1, 2, 0, 6, 2, 0, 0, 3, 7, 3, 6, 1, 4, 4, 1, 9, 7, 8, 6, 5, 9, 0, 5, 5, 7, 0, 4, 9, 2, 3, 4, 4, 4, 1, 3, 2, 5, 4, 5, 7, 5, 5, 5, 4, 5, 3, 0, 2, 0, 8, 6, 8, 5, 6, 1, 4, 8, 5, 5, 6, 7, 8, 4, 2, 1, 8, 1, 8, 3, 2, 6, 6, 4, 6, 1, 5, 3
Offset: 0
Examples
0.56617767581138455027...
References
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
Links
- Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
- Index entries for transcendental numbers
Programs
-
Mathematica
First[ RealDigits[ N[(EllipticTheta[3, 0, GoldenRatio^(-2)]^2 - 1)/4, 120], 10, 105]](* Jean-François Alcover, Jun 07 2012, after Eric W. Weisstein *)
-
PARI
th3(x)=1 + 2*suminf(n=1,x^n^2) phi=(sqrt(5)+1)/2 (th3(phi^-2)^2-1)/4 \\ Charles R Greathouse IV, Jun 06 2016
Comments