cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153427 Numbers n such that phi(n)=p^2, where p is product of digits of n.

Original entry on oeis.org

1, 12, 125, 451, 4612, 5412, 8313, 22165, 31815, 34125, 43216, 62232, 111398, 115264, 115625, 126225, 142352, 191425, 194313, 235431, 243135, 261532, 265421, 632613, 726313, 852125, 962312, 1142536, 1148316, 1156324, 1162825, 1183491, 1671183, 1672125, 1815912, 1831525, 1914157, 2124535, 2228224, 2321375, 2364132, 2463312, 3356122, 3416541, 3541252, 3716118, 3741812, 4128831, 4218912, 4331236, 4522136, 5148512, 5181293, 5183219, 5463161, 6219612, 6288113, 6411925, 6811922, 7452313, 7518119, 8741341, 9115625, 9324222
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 02 2009

Keywords

Examples

			phi(2228224)=(2*2*2*8*2*2*4)^2, so 2228224 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Apply[Times,IntegerDigits[n]]^2==EulerPhi[n],Print[n]],{n,1200000}]
    Select[Range[94*10^5],EulerPhi[#]==(Times@@IntegerDigits[#])^2&] (* Harvey P. Dale, May 03 2020 *)

Extensions

a(33)-a(649) from Max Alekseyev, Aug 18 2013, May 31 2018

A171267 Primes p such that p^s ends with p, where s is sum of the digits of p.

Original entry on oeis.org

5, 29, 193, 557, 751, 3307, 4999, 7499, 16693, 20807, 31249, 59999, 60443, 79193, 812501, 918751, 5422943, 46295807, 55781249, 74218751, 78281249, 89218751, 89999999, 282922943, 316295807, 674218751, 1583704193, 3824218751, 3958704193, 4092077057, 6342077057, 8324218751, 31666295807, 47779577057, 64478795807, 66666295807, 75000000001
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 28 2010

Keywords

Examples

			1583704193^(1+5+8+3+7+0+4+1+9+3)=1583704193 (mod 10^10) so 1583704193 is
in the sequence.
It is interesting that each of the four numbers 751^(7+5+1), 751^(7*5*1),
751^pi(751) and 751^prime(751) ends with 751.
		

Crossrefs

Programs

  • Mathematica
    Do[n=Prime[m];a=IntegerDigits[n];If[PowerMod[n,Apply[Plus,a],10^Length[a]]
    ==n,Print[n]],{m,100000000}]

Extensions

Terms a(28) onward from Max Alekseyev, Aug 18 2013
Showing 1-2 of 2 results.