A153657 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10, read by rows.
2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25955, 1362648, 25955, 2, 2, 27523, 20483624, 20483624, 27523, 2, 2, 29091, 40833912, 1107920632, 40833912, 29091, 2, 2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2, 2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2
Offset: 1
Examples
Triangle begins as: 2; 29, 29; 2, 1678, 2; 2, 24387, 24387, 2; 2, 25955, 1362648, 25955, 2; 2, 27523, 20483624, 20483624, 27523, 2; 2, 29091, 40833912, 1107920632, 40833912, 29091, 2; 2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2; 2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), this sequence (2,7,10).
Cf. A009973 (powers of 29).
Programs
-
Magma
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >; function T(n,k,p,q,j) if n eq 2 then return NthPrime(j); elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j); elif (k eq 1 or k eq n) then return 2; else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j); end if; return T; end function; [T(n,k,2,7,10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
-
Mathematica
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]]; Table[T[n,k,2,7,10], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
-
Sage
@CachedFunction def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2) def T(n,k,p,q,j): if (n==2): return nth_prime(j) elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j) elif (k==1 or k==n): return 2 else: return T(n-1,k,2,7,10) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j) flatten([[T(n,k,p,q,j) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
Formula
T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,7,10).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,7,10), = 2*A009973(n-1). (End)
Extensions
Edited by G. C. Greubel, Mar 06 2021