cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A153710 Numbers k such that the fractional part of Pi^k is less than 1/k.

Original entry on oeis.org

1, 3, 5, 9, 10, 11, 59, 81, 264, 281, 472, 3592, 10479, 12128, 65875, 118885
Offset: 1

Views

Author

Hieronymus Fischer, Jan 08 2009

Keywords

Comments

Numbers k such that fract(Pi^k) < 1/k, where fract(x) = x-floor(x).
The next such number must be greater than 100000.
a(17) > 300000. - Robert Price, Mar 25 2019

Examples

			a(4) = 9 since fract(Pi^9) = 0.0993... < 1/9, but fract(Pi^k) = 0.3891..., 0.2932..., 0.5310... for 6 <= k <= 8, which all are greater than 1/k.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], N[FractionalPart[Pi^#], 100] < (1/#) &]  (* G. C. Greubel, Aug 25 2016 *)
  • PARI
    isok(k) = frac(Pi^k) < 1/k; \\ Michel Marcus, Feb 11 2014

Extensions

a(16) from Robert Price, Mar 25 2019

A153706 Greatest number m such that the fractional part of e^A153702(n) <= 1/m.

Original entry on oeis.org

1, 2, 11, 11, 964, 34015, 156075, 952945, 170942, 247768, 397506
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(3) = 11 since 1/12 < fract(e^A153702(3)) = fract(e^3) = 0.0855... <= 1/11.
		

Crossrefs

Programs

  • Mathematica
    Floor[1/(#-Floor[#])]&/@Exp[Select[Range[1000],FractionalPart[E^#]<(1/#)&]] (* Julien Kluge, Sep 20 2016 *)

Formula

a(n) = floor(1/fract(e^A153702(n))), where fract(x) = x - floor(x).

Extensions

a(10)-a(11) from Jinyuan Wang, Mar 03 2020

A153698 Greatest number m such that the fractional part of (10/9)^A153694(n) <= 1/m.

Original entry on oeis.org

9, 4, 11, 82, 6131, 4549, 26735, 8620, 14923, 20328, 151439, 227416, 771341, 2712159, 2676962, 2409266, 4490404, 4041364
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(3) = 11 since 1/12 < fract((10/9)^A153694(3)) = fract((10/9)^7) = 0.09075... <= 1/11.
		

Crossrefs

Formula

a(n) = floor(1/fract((10/9)^A153694(n))), where fract(x) = x - floor(x).

Extensions

a(14)-a(18) from Jinyuan Wang, Mar 03 2020

A153682 Greatest number m such that the fractional part of (1024/1000)^A153678(n) <= 1/m.

Original entry on oeis.org

41, 20, 13, 10, 7, 6, 718, 1350, 12472, 811799, 11462221, 8698270, 56414953
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(5) = 7 since 1/8 < fract((1024/1000)^A153678(5)) = fract((1024/1000)^5) = 0.12589... <= 1/7.
		

Crossrefs

Formula

a(n) = floor(1/fract((1024/1000)^A153678(n))), where fract(x) = x - floor(x).

Extensions

a(10)-a(13) from Jinyuan Wang, Mar 03 2020

A153674 Greatest number m such that the fractional part of (101/100)^A153670(n) <= 1/m.

Original entry on oeis.org

100, 49, 33, 24, 19, 16, 13, 12, 10, 147, 703, 676, 932, 3389, 7089, 1129226, 1741049, 1356464, 1960780, 11014240, 75249086, 28657625, 132665447, 499298451
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(5) = 19 since 1/20 < fract((101/100)^A153670(5)) = fract((101/100)^5) = 0.0510... <= 1/19.
		

Crossrefs

Formula

a(n) = floor(1/fract((101/100)^A153670(n))), where fract(x) = x - floor(x).

Extensions

a(18)-a(24) from Jinyuan Wang, Mar 03 2020

A153690 Greatest number m such that the fractional part of (11/10)^A153686(n) <= 1/m.

Original entry on oeis.org

10, 4, 3, 18, 253, 58, 618, 484, 6009, 6767, 21386, 697723, 634293, 189959, 4186162, 31102351
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(4) = 18 since 1/19 < fract((11/10)^A153686(4)) = fract((11/10)^17) = 0.05447... <= 1/18.
		

Crossrefs

Formula

a(n) = floor(1/fract((11/10)^A153686(n))), where fract(x) = x - floor(x).

Extensions

a(14)-a(16) from Jinyuan Wang, Mar 03 2020

A154135 Greatest number m such that the fractional part of (4/3)^A154131(n) <= 1/m.

Original entry on oeis.org

3, 6, 30, 6430, 4822, 22869, 20551, 224544, 184762, 2396968, 15229280, 3183837, 2387878, 28274047, 7149842
Offset: 1

Views

Author

Hieronymus Fischer, Jan 11 2009

Keywords

Examples

			a(3)=30 since 1/31<fract((4/3)^A154131(3))=fract((4/3)^17)=0.0327357...<=1/30.
		

Crossrefs

Formula

a(n) = floor(1/fract((4/3)^A154131(n))), where fract(x) = x - floor(x).

Extensions

a(10)-a(15) from Jinyuan Wang, Mar 03 2020
Showing 1-7 of 7 results.