A153722
Greatest number m such that the fractional part of (Pi-2)^A153718(n) <= 1/m.
Original entry on oeis.org
7, 3, 38, 318, 78, 83, 265, 185, 73351, 356362
Offset: 1
a(3) = 38 since 1/39 < fract((Pi-2)^A153718(3)) = fract((Pi-2)^23) = 0.02600... <= 1/38.
-
A153718 = {1, 2, 23, 24, 35, 41, 65, 182, 72506, 107346};
Table[Floor[1/FractionalPart[(Pi - 2)^A153718[[n]]]], {n, 1,
Length[A153718]}] (* Robert Price, May 10 2019 *)
A153670
Numbers k such that the fractional part of (101/100)^k is less than 1/k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 70, 209, 241, 378, 2697, 4806, 173389, 529938, 1334508, 1572706, 7840546, 15896994, 20204295, 71074288, 119325567
Offset: 1
a(10) = 70 since fract((101/100)^70) = 0.006... < 1/10, but fract((101/100)^k) > 0.1 >= 1/k for 10 <= k <= 69.
-
Select[Range[1000], FractionalPart[(101/100)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)
-
from itertools import count, islice
def A153670gen(): # generator of terms
k10, k11 = 100, 101
for k in count(1):
if (k11 % k10)*k < k10:
yield k
k10 *= 100
k11 *= 101
A153670_list = list(islice(A153670gen(),16)) # Chai Wah Wu, Dec 23 2021
A153678
Numbers k such that the fractional part of (1024/1000)^k is less than 1/k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 585, 1164, 1707, 522271, 3675376, 3906074, 9424094
Offset: 1
a(7) = 585 since fract((1024/1000)^585) = 0.00139... < 1/585, but fract((1024/1000)^k) >= 1/k for 7 <= k <= 584.
-
Select[Range[2000], FractionalPart[(1024/1000)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016; corrected by Robert Price, Mar 16 2019 *)
-
isok(n) = frac((1024/1000)^n) < 1/n \\ Michel Marcus, Aug 06 2013
A153686
Numbers k such that the fractional part of (11/10)^k is less than 1/k.
Original entry on oeis.org
1, 2, 3, 17, 37, 48, 237, 420, 599, 615, 6638, 13885, 13886, 62963, 1063942, 9479731
Offset: 1
a(4) = 17 since fract((11/10)^17) = 0.05447... < 1/17, but fract((11/10)^k) >= 1/k for 4 <= k <= 16.
-
Select[Range[1000], FractionalPart[(11/10)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)
-
A153686_list, k, k10, k11 = [], 1, 10, 11
while k < 10**6:
if (k11 % k10)*k < k10:
A153686_list.append(k)
k += 1
k10 *= 10
k11 *= 11 # Chai Wah Wu, Apr 01 2021
A153694
Numbers k such that the fractional part of (10/9)^k is less than 1/k.
Original entry on oeis.org
1, 2, 7, 62, 324, 1647, 3566, 5464, 8655, 8817, 123956, 132891, 182098, 566593, 2189647, 2189648, 3501843, 3501844
Offset: 1
a(3) = 7 since fract((10/9)^7) = 0.09075... < 1/7, but fract((10/9)^k) >= 1/k for 3 <= k <= 6.
A153702
Numbers k such that the fractional part of e^k is less than 1/k.
Original entry on oeis.org
1, 2, 3, 9, 732, 5469, 28414, 37373, 93638, 136986, 192897
Offset: 1
a(4) = 9 since fract(e^9) = 0.08392... < 1/9, but fract(e^k) = 0.598..., 0.413..., 0.428..., 0.633..., 0.957... for 4 <= k <= 8, which are all greater than 1/k.
A153710
Numbers k such that the fractional part of Pi^k is less than 1/k.
Original entry on oeis.org
1, 3, 5, 9, 10, 11, 59, 81, 264, 281, 472, 3592, 10479, 12128, 65875, 118885
Offset: 1
a(4) = 9 since fract(Pi^9) = 0.0993... < 1/9, but fract(Pi^k) = 0.3891..., 0.2932..., 0.5310... for 6 <= k <= 8, which all are greater than 1/k.
-
Select[Range[1000], N[FractionalPart[Pi^#], 100] < (1/#) &] (* G. C. Greubel, Aug 25 2016 *)
-
isok(k) = frac(Pi^k) < 1/k; \\ Michel Marcus, Feb 11 2014
Showing 1-7 of 7 results.
Comments