cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153774 a(2*n) = 3*a(2*n-1), a(2*n+1) = 3*a(2*n) - 1, with a(1) = 1.

Original entry on oeis.org

1, 3, 8, 24, 71, 213, 638, 1914, 5741, 17223, 51668, 155004, 465011, 1395033, 4185098, 12555294, 37665881, 112997643, 338992928, 1016978784, 3050936351, 9152809053, 27458427158, 82375281474, 247125844421, 741377533263, 2224132599788, 6672397799364, 20017193398091
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2009

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i,i] := 11, (i>1), A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(2n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010

Examples

			a(2) = 3*1 = 3.
a(3) = 3*a(2)-1 = 8.
a(4) = 3*a(3) = 24.
		

Crossrefs

Programs

  • Magma
    I:=[1,3,8]; [n le 3 select I[n] else 3*Self(n-1) + Self(n-2) - 3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 28 2016
    
  • Maple
    A153774 := proc(n) 1/4+(-1)^n/8+7*3^(n-1)/8 ; end proc: seq(A153774(n),n=1..80) ; # R. J. Mathar, Mar 13 2010
  • Mathematica
    LinearRecurrence[{3,1,-3},{1,3,8},30] (* or *) Rest[ CoefficientList[ Series[x (-1+2x^2)/((1-x)(3x-1)(1+x)),{x,0,30}],x]] (* Harvey P. Dale, Jun 08 2011 *)
    RecurrenceTable[{a[1] == 1, a[2] == 3, a[3] == 8, a[n] == 3 a[n-1] + a[n-2] - 3 a[n-3]}, a, {n, 30}] (* Vincenzo Librandi, Aug 28 2016 *)
  • PARI
    a(n)=(3^(n-1)*7)\/8 \\ Charles R Greathouse IV, Aug 28 2016

Formula

From R. J. Mathar, Mar 13 2010: (Start)
a(n) = (7*3^(n - 1) + 2 + (-1)^n)/8.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3).
G.f.: x*(-1 + 2*x^2)/ ((1-x) * (3*x-1) * (1+x)). (End)
E.g.f.: (1/24)*(3*exp(-x) - 16 + 6*exp(x) + 7*exp(3*x)). - G. C. Greubel, Aug 27 2016