cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153808 8 times octagonal numbers: 8*n*(3*n-2).

Original entry on oeis.org

0, 8, 64, 168, 320, 520, 768, 1064, 1408, 1800, 2240, 2728, 3264, 3848, 4480, 5160, 5888, 6664, 7488, 8360, 9280, 10248, 11264, 12328, 13440, 14600, 15808, 17064, 18368, 19720, 21120, 22568, 24064, 25608, 27200, 28840, 30528, 32264
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Crossrefs

Cf. A000567 (octagonal numbers), A064201 (9 times octagonal numbers), A139267 (twice octagonal numbers), A152751 (3 times octagonal numbers), A153794 (4 times octagonal numbers).

Programs

  • Magma
    [ 8*n*(3*n-2): n in [0..40] ];
    
  • Mathematica
    Table[8*n*(3*n-2), {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,8,64}, 25] (* G. C. Greubel, Aug 29 2016 *)
    8*PolygonalNumber[8,Range[0,40]] (* Harvey P. Dale, Nov 22 2023 *)
  • PARI
    a(n)=24*n^2-16*n \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 24*n^2 - 16*n = 8*A000567(n) = 4*A139267(n) = 2*A153794(n).
a(n) = a(n-1) + 48*n - 40 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 8*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 8*x*(1 + 3*x)*exp(x). (End)