cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A153851 Nonzero coefficients of the g.f. that satisfies: A(x) = x + A(A(x))^3.

Original entry on oeis.org

1, 1, 6, 57, 683, 9474, 145815, 2430393, 43202448, 810629805, 15938815794, 326653743510, 6949638584208, 153009877730525, 3477623225388063, 81429702521625843, 1961136442605508341, 48513571089988199157
Offset: 1

Views

Author

Paul D. Hanna, Jan 21 2009

Keywords

Examples

			G.f.: A(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +...
A(x - A(x)^3) = x where
A(x)^3 = x^3 + 3*x^5 + 21*x^7 + 208*x^9 + 2517*x^11 + 34851*x^13 +...
SYSTEM OF RELATED FUNCTIONS.
A = A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x^2*B^3;
B = A + x^2*C^3;
C = B + x^2*D^3;
D = C + x^2*E^3;
E = D + x^2*F^3; ...
where the functions xB, xC, xD, etc., are successive iterations of A(x):
x*A = A(x),
x*B = A(A(x)) = g.f. of A153852,
x*C = A(A(A(x))) = g.f. of A153853,
x*D = A(A(A(A(x)))) = g.f. of A153854, etc.
The nonzero coefficients of these functions begin:
A:[1, 1, 6, 57, 683, 9474, 145815, 2430393, 43202448,...];
B:[1, 2, 15, 165, 2213, 33693, 561867, 10053141, 190489374,...];
C:[1, 3, 27, 339, 5067, 84738, 1536867, 29687772, 603835479,...];
D:[1, 4, 42, 594, 9827, 179928, 3545637, 73988631, 1618178067,...];
E:[1, 5, 60, 945, 17180, 342765, 7316178, 164606166, 3866962617,...];
F:[1, 6, 81, 1407, 27918, 603879, 13907133, 336334443, 8466942393,...];
G:[1, 7, 105, 1995, 42938, 1001973, 24795645, 642380025, 17278647147,...];
H:[1, 8, 132, 2724, 63242, 1584768, 41975610, 1160887350, 33260962995,..]; ...
The main diagonal in the above table is A153850.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x+x^2); for(i=0, n, A=serreverse(x-subst(A^3, x, x+x^2*O(x^(2*n))))) ; polcoeff(A, 2*n-1)}

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies:
(1) A(x) = Series_Reversion( x - A(x)^3 ).
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n) / n!. - Paul D. Hanna, Sep 07 2020
(3) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/x / n! ). - Paul D. Hanna, Sep 07 2020
(4) x = A(A( x-x^3 - A(x)^3 )). - Paul D. Hanna, Sep 07 2020

A153852 Nonzero coefficients of g.f.: A(x) = G(G(x)) where G(x) = x + G(G(x))^3 is the g.f. of A153851.

Original entry on oeis.org

1, 2, 15, 165, 2213, 33693, 561867, 10053141, 190489374, 3788856192, 78613758564, 1693737431667, 37760673462507, 868775517322730, 20583609967109565, 501340716386677815, 12535093359045980151, 321360932709750239226
Offset: 1

Views

Author

Paul D. Hanna, Jan 21 2009

Keywords

Examples

			G.f.: A(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 + ...
A(x)^3 = x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 + 145815*x^13 + ...
A(x) = G(G(x)) where
G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 + ...
Also, A(x) = G(x) + G(G(G(x)))^3 where G(G(G(x))) begins
G(G(G(x))) = x + 3*x^3 + 27*x^5 + 339*x^7 + 5067*x^9 + 84738*x^11 + ... + A153853(n)*x^(2*n-1) + ...
G(G(G(x)))^3 = x^3 + 9*x^5 + 108*x^7 + 1530*x^9 + 24219*x^11 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(G,x,G), 2*n-1)}

Formula

G.f.: A(x) = Sum_{n>=0} a(2n+1)*x^(2n+1) = G(G(x)) where G(x) is the g.f. of A153851.
G.f.: A(x) = G(x) + G(G(G(x)))^3 where G(x) is the g.f. of A153851 and G(G(G(x))) is the g.f. of A153853.

Extensions

Formula corrected by Paul D. Hanna, Dec 07 2009

A153853 Nonzero coefficients of g.f.: A(x) = G(G(G(x))) where G(x) = x + G(G(x))^3 is the g.f. of A153851.

Original entry on oeis.org

1, 3, 27, 339, 5067, 84738, 1536867, 29687772, 603835479, 12831704772, 283320533673, 6473430313902, 152586247226958, 3701535783215857, 92238331155559794, 2357440730629390878, 61720161749858023305
Offset: 1

Views

Author

Paul D. Hanna, Jan 21 2009

Keywords

Examples

			G.f.: A(x) = x + 3*x^3 + 27*x^5 + 339*x^7 + 5067*x^9 +...
A(x)^3 = x^3 + 9*x^5 + 108*x^7 + 1530*x^9 + 24219*x^11 +...
A(x) = G(G(G(x))) where
G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +...
Let F(x) = g.f. of A153852 and H(x) = g.f. of A153854, then
A(x) = F(x) + x^2*H(x)^3 where
F(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 +...
H(x) = x + 4*x^3 + 42*x^5 + 594*x^7 + 9827*x^9 +...
H(x)^3 = x^3 + 12*x^5 + 174*x^7 + 2854*x^9 + 51045*x^11 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(G,x,subst(G,x,G)), 2*n-1)}

Formula

G.f.: A(x) = Sum_{n>=0} a(2n+1)*x^(2n+1) = G(G(G(x))) where G(x) is the g.f. of A153851.
G.f.: A(x) = F(x) + x^2*H(x)^3 where F(x) is the g.f. of A153852 and H(x) is the g.f. of A153854.

A153854 Nonzero coefficients of g.f.: A(x) = G(G(G(G(x)))) where G(x) = x + G(G(x))^3 is the g.f. of A153851.

Original entry on oeis.org

1, 4, 42, 594, 9827, 179928, 3545637, 73988631, 1618178067, 36832568283, 868184365137, 21113629246953, 528282055072773, 13569770211307323, 357215846155083585, 9623529095387448543, 265025641890780905892
Offset: 1

Views

Author

Paul D. Hanna, Jan 21 2009

Keywords

Examples

			G.f.: A(x) = x + 4*x^3 + 42*x^5 + 594*x^7 + 9827*x^9 +...
A(x)^3 = x^3 + 12*x^5 + 174*x^7 + 2854*x^9 + 51045*x^11 +...
A(x) = G(G(G(G(x)))) where
G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +...
A(x) = F(F(x)) where F(x) = G(G(x)) is the g.f. of A153852:
F(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 + 33693*x^11 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(subst(G,x,G),x,subst(G,x,G)), 2*n-1)}

Formula

G.f.: A(x) = Sum_{n>=0} a(2n+1)*x^(2n+1) = G(G(G(G(x)))) where G(x) is the g.f. of A153851.
G.f.: A(x) = F(F(x)) where F(x) is the g.f. of A153852.
Showing 1-4 of 4 results.