A153875 3 times 13-gonal (or tridecagonal) numbers: a(n) = 3*n*(11*n - 9)/2.
0, 3, 39, 108, 210, 345, 513, 714, 948, 1215, 1515, 1848, 2214, 2613, 3045, 3510, 4008, 4539, 5103, 5700, 6330, 6993, 7689, 8418, 9180, 9975, 10803, 11664, 12558, 13485, 14445, 15438, 16464, 17523, 18615, 19740, 20898, 22089
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[(33*n^2 - 27*n)/2, {n,0,25}] (* G. C. Greubel, Aug 31 2016 *)
-
PARI
a(n)=3*n*(11*n-9)/2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (33*n^2 - 27*n)/2 = A051865(n)*3.
a(n) = a(n-1) + 33*n - 30, with n>0, a(0)=0. - Vincenzo Librandi, Dec 14 2010
G.f.: 3*x*(1 + 10*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 31 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 11*x)*exp(x). (End)