cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153881 1 followed by -1, -1, -1, ... .

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Mats Granvik, Jan 03 2009

Keywords

Comments

Dirichlet inverse of A074206.

Crossrefs

If prefixed by initial 0, we get A134824.
Cf. A074206 (Dirichlet inverse).

Programs

Formula

G.f: x*(1-2*x)/(1-x). - Mats Granvik, Mar 09 2009, rewritten R. J. Mathar, Mar 31 2010
a(n) = (-1)^A000040(n). - Juri-Stepan Gerasimov, Sep 10 2009
G.f.: x / (1 + x / (1 - 2*x)). - Michael Somos, Apr 02 2012
From Wesley Ivan Hurt, Jun 20 2014: (Start)
a(1) = 1; a(n) = -1, n > 1.
a(n) = 1 - 2*sign(n-1) = 1 - 2*A057427(n-1).
a(n) = (-1)^sign(1-n) = (-1)^A057427(1-n).
a(n) = 2*floor(1/n)-1 = 2*A063524(n)-1. (End)
Dirichlet g.f.: 2 - zeta(s). - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} A033879(d)*A055615(n/d) = Sum_{d|n} A344587(d)*A346234(n/d). - Antti Karttunen, Nov 22 2024

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
More terms from Antti Karttunen, Nov 22 2024