cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A154021 a(n+2) = 16*a(n+1) - a(n), with a(1)=0, a(2)=4.

Original entry on oeis.org

0, 4, 64, 1020, 16256, 259076, 4128960, 65804284, 1048739584, 16714029060, 266375725376, 4245297576956, 67658385505920, 1078288870517764, 17184963542778304, 273881127813935100, 4364913081480183296
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y, then 16=(x^2+y^2)/(xy+1).
In general, the sequence a(1)=0, a(2)=U; a(n+2)=U^2*a(n+1)-a(n) has the property that "If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=U^2".

Crossrefs

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 25 2012
  • Mathematica
    Nest[Append[#,16Last[#]-#[[-2]]]&,{0,4},20]  (* or *) Rest[CoefficientList[Series[4x^2/(1-16x+x^2), {x,0,22}], x]]  (* Harvey P. Dale, Apr 17 2011 *)
    LinearRecurrence[{16, -1}, {0, 4}, 20] (* T. D. Noe, Apr 17 2011 *)

Formula

From R. J. Mathar, Jan 05 2011: (Start)
G.f.: 4*x^2/(1 -16*x +x^2).
a(n) = 4*A077412(n-2). (End)

Extensions

375725376 replaced by 266375725376 - R. J. Mathar, Jan 07 2009
Edited by N. J. A. Sloane, Jun 23 2010 at the suggestion of Joerg Arndt.
Showing 1-1 of 1 results.