A154138 Indices k such that 3 plus the k-th triangular number is a perfect square.
1, 3, 12, 22, 73, 131, 428, 766, 2497, 4467, 14556, 26038, 84841, 151763, 494492, 884542, 2882113, 5155491, 16798188, 30048406, 97907017, 175134947, 570643916, 1020761278, 3325956481, 5949432723, 19385094972, 34675835062, 112984613353
Offset: 1
Keywords
Examples
1*(1+1)/2+3 = 2^2. 3*(3+1)/2+3 = 3^2. 12*(12+1)/2+3 = 9^2. 22*(22+1)/2+3 = 16^2.
Links
- F. T. Adams-Watters, SeqFan Discussion, Oct 2009
Programs
-
Magma
[n: n in [0..2*10^7] | IsSquare(3+n*(n+1)/2)]; // Vincenzo Librandi, Sep 03 2016
-
Magma
[1] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+1)/2)))^2-n*(n+1)/2 eq 3]; // Vincenzo Librandi, Sep 03 2016
-
Mathematica
a[1]=1;a[2]=3;a[3]=12;a[4]=22;a[n_]:=a[n]=6*a[n-2]-a[n-4]+2;Table[a[n],{n,35}] (* Zak Seidov, Oct 21 2009 *) Select[Range[100], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 3 &] (* G. C. Greubel, Sep 02 2016 *) Select[Range[0, 2 10^7], IntegerQ[Sqrt[3 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)
-
PARI
for(n=0, 1e10, if(issquare(3+n*(n+1)/2), print1(n", "))) \\ Altug Alkan, Oct 16 2015
Formula
{k: 3+k*(k+1)/2 in A000290}.
Conjectures:
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5);
G.f.: x*(1 + 2*x + 3*x^2 - 2*x^3 - 2*x^4)/((1-x)*(x^2-2*x-1)*(x^2+2*x-1)). [Comment from Zak Seidov, Oct 21 2009: I believe both of these conjectures are correct.]
a(1..4)=(1,3,12,22); a(n>4)=6*a(n-2)-a(n-4)+2. [Zak Seidov, Oct 21 2009]
Extensions
More terms from Zak Seidov, Oct 21 2009
Comments