cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154138 Indices k such that 3 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

1, 3, 12, 22, 73, 131, 428, 766, 2497, 4467, 14556, 26038, 84841, 151763, 494492, 884542, 2882113, 5155491, 16798188, 30048406, 97907017, 175134947, 570643916, 1020761278, 3325956481, 5949432723, 19385094972, 34675835062, 112984613353
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Comments

Also numbers n such that (ceiling(sqrt(n*(n+1)/2)))^2 - n*(n+1)/2 = 3. - Ctibor O. Zizka, Nov 10 2009
Note that 3 is 2nd triangular number A000217(2) = 2(2+1)/2, hence 2nd and n-th triangular numbers sum up to a square. - Zak Seidov, Oct 16 2015

Examples

			1*(1+1)/2+3 = 2^2. 3*(3+1)/2+3 = 3^2. 12*(12+1)/2+3 = 9^2. 22*(22+1)/2+3 = 16^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | IsSquare(3+n*(n+1)/2)]; // Vincenzo Librandi, Sep 03 2016
    
  • Magma
    [1] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+1)/2)))^2-n*(n+1)/2 eq 3]; // Vincenzo Librandi, Sep 03 2016
  • Mathematica
    a[1]=1;a[2]=3;a[3]=12;a[4]=22;a[n_]:=a[n]=6*a[n-2]-a[n-4]+2;Table[a[n],{n,35}] (* Zak Seidov, Oct 21 2009 *)
    Select[Range[100], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 3 &] (* G. C. Greubel, Sep 02 2016 *)
    Select[Range[0, 2 10^7], IntegerQ[Sqrt[3 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)
  • PARI
    for(n=0, 1e10, if(issquare(3+n*(n+1)/2), print1(n", "))) \\ Altug Alkan, Oct 16 2015
    

Formula

{k: 3+k*(k+1)/2 in A000290}.
Conjectures:
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5);
G.f.: x*(1 + 2*x + 3*x^2 - 2*x^3 - 2*x^4)/((1-x)*(x^2-2*x-1)*(x^2+2*x-1)). [Comment from Zak Seidov, Oct 21 2009: I believe both of these conjectures are correct.]
a(1..4)=(1,3,12,22); a(n>4)=6*a(n-2)-a(n-4)+2. [Zak Seidov, Oct 21 2009]

Extensions

More terms from Zak Seidov, Oct 21 2009