cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154141 Indices k such that 8 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

1, 7, 16, 46, 97, 271, 568, 1582, 3313, 9223, 19312, 53758, 112561, 313327, 656056, 1826206, 3823777, 10643911, 22286608, 62037262, 129895873, 361579663, 757088632, 2107440718, 4412635921, 12283064647, 25718726896, 71590947166, 149899725457, 417262618351
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Comments

Also numbers n such that (ceiling(sqrt(n*(n+1)/2)))^2 - n*(n+1)/2 = 8. - Ctibor O. Zizka, Nov 10 2009

Examples

			1*(1+1)/2+8 = 3^2. 7*(7+1)/2+8 = 6^2. 16*(16+1)/2+8 = 12^2. 46*(46+1)/2+8 = 33^2.
		

Crossrefs

Programs

  • Magma
    [1] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+ 1)/2)))^2-n*(n+1)/2 eq  8]; // Vincenzo Librandi, Sep 03 2016
    
  • Magma
    [n: n in [0..2*10^7] | IsSquare(8+n*(n+1)/2)]; // Vincenzo Librandi, Sep 03 2016
  • Mathematica
    Join[{1}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 8 &]] (* G. C. Greubel, Sep 03 2016 *)
    Select[Range[0, 2 10^7], IntegerQ[Sqrt[8 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)
  • PARI
    isok(n) = issquare(8 + n*(n+1)/2); \\ Michel Marcus, Sep 03 2016
    

Formula

{k: 8+k*(k+1)/2 in A000290}
Conjectures: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1 +6*x +3*x^2 -6*x^3 -2*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 4 + 1/(x-1) - 3/(x^2+2*x-1) + (6+15*x)/(x^2-2*x-1) )/2. (End)
a(1..4) = (1,7,16,46); a(n) = 6*a(n-2) - a(n-4) + 2, for n>4. - Ctibor O. Zizka, Nov 10 2009

Extensions

a(17)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015