cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154142 Indices k such that 9 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

0, 10, 13, 63, 80, 370, 469, 2159, 2736, 12586, 15949, 73359, 92960, 427570, 541813, 2492063, 3157920, 14524810, 18405709, 84656799, 107276336, 493415986, 625252309, 2875839119, 3644237520, 16761618730, 21240172813, 97693873263, 123796799360, 569401620850
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			0*(0+1)/2+9 = 3^2. 10*(10+1)/2+9 = 8^2. 13*(13+1)/2+9 = 10^2. 63*(63+1)/2+9 = 45^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | IsSquare(9 + n*(n+1)/2)]; // Vincenzo Librandi, Sep 03 2016
    
  • Magma
    [0] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+ 1)/2)))^2-n*(n+1)/2 eq 9]; // Vincenzo Librandi, Sep 03 2016
  • Maple
    seq(seq((8*orthopoly[U](k+j,3) - (8 - (-1)^j)*orthopoly[T](k+j,3)-1)/2, j=0..1),k=0..20); # Robert Israel, Jul 07 2015
  • Mathematica
    Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 9 &]] (* G. C. Greubel, Sep 03 2016 *)
    Select[Range[0, 2 10^7], IntegerQ[Sqrt[9 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)
    (Sqrt[8#+1]-1)/2&/@Select[Accumulate[Range[0,5*10^6]],IntegerQ[Sqrt[#+9]]&] (* The program generates the first 17 terms of the sequence. *) (* Harvey P. Dale, Oct 21 2024 *)

Formula

{k: 9+k*(k+1)/2 in A000290}
Conjectures: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(10 +3*x -10*x^2 -x^3)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))
G.f.: ( 2 + (-5+4*x)/(x^2+2*x-1) + (6+17*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
a(1..4) = (0,10,13,63); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009
From Robert Israel, Jul 07 2015: (Start)
These conjectures follow from the theory of Pell-like equations.
a(2*k+1) = (8 * A001109(k) -7 * A001541(k) - 1)/2.
a(2*k) = (8 * A001109(k) -9 * A001541(k) - 1)/2. (End)

Extensions

a(16)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015