cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154143 Indices k such that 10 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

3, 5, 26, 36, 155, 213, 906, 1244, 5283, 7253, 30794, 42276, 179483, 246405, 1046106, 1436156, 6097155, 8370533, 35536826, 48787044, 207123803, 284351733, 1207205994, 1657323356, 7036112163, 9659588405, 41009466986, 56300207076, 239020689755, 328141654053
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			3*(3+1)/2+10 = 4^2. 5*(5+1)/2+10 = 5^2. 26*(26+1)/2+10 = 19^2. 36*(36+1)/2+10 = 26^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | IsSquare(10+n*(n+1)/2)]; // Vincenzo Librandi, Sep 03 2016
    
  • Magma
    [3,5] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+ 1)/2)))^2-n*(n+1)/2 eq 10]; // Vincenzo Librandi, Sep 03 2016
  • Mathematica
    Join[{3, 5}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 10 &]] (* G. C. Greubel, Sep 03 2016 *)
    Select[Range[0, 2 10^7], IntegerQ[Sqrt[10 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)
  • PARI
    isok(n) = issquare(10 + n*(n+1)/2); \\ Michel Marcus, Sep 03 2016
    

Formula

{k: 10+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(3 +2*x +3*x^2 -2*x^3 -4*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))
G.f.: ( 8 + (-1-6*x)/(x^2+2*x-1) + (8+17*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
a(1..4) = (3,5,26,36); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009

Extensions

a(17)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015