A154222 Row sums of number triangle A154221.
1, 2, 4, 8, 17, 38, 87, 200, 457, 1034, 2315, 5132, 11277, 24590, 53263, 114704, 245777, 524306, 1114131, 2359316, 4980757, 10485782, 22020119, 46137368, 96469017, 201326618, 419430427, 872415260, 1811939357, 3758096414, 7784628255, 16106127392, 33285996577
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
Magma
[(1/4)*(4*(n+1)+(n-1)*2^n+0^n): n in [0..35]]; // Vincenzo Librandi, Sep 07 2016
-
Mathematica
Join[{1},LinearRecurrence[{6, -13, 12, -4}, {2, 4, 8,17}, 25]] (* or *) Table[(1/4)*( 4*(n+1) + (n-1)*2^n + 0^n), {n,0,25}] (* G. C. Greubel, Sep 06 2016 *)
-
PARI
Vec((x^4-2*x^3+5*x^2-4*x+1)/((x-1)^2*(2*x-1)^2) + O(x^100)) \\ Colin Barker, Oct 11 2014
Formula
a(n) = (1/4)*( 4*(n+1) + (n-1)*2^n + 0^n).
From Colin Barker, Oct 11 2014: (Start)
a(n) = A045618(n-4) + 2^n for n>3.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>4.
a(n) = (4 - 2^n + (4+2^n)*n)/4 for n>0.
G.f.: (x^4 - 2*x^3 + 5*x^2 - 4*x + 1) / ((x-1)^2*(2*x-1)^2).
(End)
E.g.f.: (1/4)*(1 + 4*(1 + x)*exp(x) + (2*x - 1)*exp(2*x)). - G. C. Greubel, Sep 06 2016
Extensions
More terms and xrefs from Colin Barker, Oct 11 2014