A154228
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)*(2*n+3)/6)*T(n-2, k-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 16, 1, 1, 47, 47, 1, 1, 103, 974, 103, 1, 1, 195, 5354, 5354, 195, 1, 1, 336, 19969, 147068, 19969, 336, 1, 1, 541, 60085, 1259253, 1259253, 60085, 541, 1, 1, 827, 156386, 7010503, 44432886, 7010503, 156386, 827, 1, 1, 1213, 365498, 30299614, 536255794, 536255794, 30299614, 365498, 1213, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 16, 1;
1, 47, 47, 1;
1, 103, 974, 103, 1;
1, 195, 5354, 5354, 195, 1;
1, 336, 19969, 147068, 19969, 336, 1;
1, 541, 60085, 1259253, 1259253, 60085, 541, 1;
1, 827, 156386, 7010503, 44432886, 7010503, 156386, 827, 1;
1, 1213, 365498, 30299614, 536255794, 536255794, 30299614, 365498, 1213, 1;
-
f:= func< n | (n+1)*(n+2)*(2*n+3)/6 >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
-
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)*(2*n+3)/6)*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)*(n+2)*(2*n+3)/6)*T[n-2, k-1]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
def f(n): return (n+1)*(n+2)*(2*n+3)/6
def T(n,k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
A154229
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)^2*T(n-2, k-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 38, 1, 1, 139, 139, 1, 1, 365, 8828, 365, 1, 1, 807, 70492, 70492, 807, 1, 1, 1592, 357459, 7062136, 357459, 1592, 1, 1, 2889, 1404923, 98777227, 98777227, 1404923, 2889, 1, 1, 4915, 4631612, 824036625, 14498379854, 824036625, 4631612, 4915, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 38, 1;
1, 139, 139, 1;
1, 365, 8828, 365, 1;
1, 807, 70492, 70492, 807, 1;
1, 1592, 357459, 7062136, 357459, 1592, 1;
1, 2889, 1404923, 98777227, 98777227, 1404923, 2889, 1;
1, 4915, 4631612, 824036625, 14498379854, 824036625, 4631612, 4915, 1;
-
f:= func< n | Binomial(n+2,2)^2 >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
-
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) + T(n-1, k-1) + binomial(n+2,2)^2*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + Binomial[n+2, 2]^2*T[n-2, k-1]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
def f(n): return binomial(n+2,2)^2
def T(n,k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
A154230
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T(n-2, k-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 100, 1, 1, 455, 455, 1, 1, 1435, 98810, 1435, 1, 1, 3711, 1135370, 1135370, 3711, 1, 1, 8388, 7849141, 464306300, 7849141, 8388, 1, 1, 17161, 40410421, 10431621081, 10431621081, 40410421, 17161, 1, 1, 32495, 169040786, 130822910455, 7140071740062, 130822910455, 169040786, 32495, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 100, 1;
1, 455, 455, 1;
1, 1435, 98810, 1435, 1;
1, 3711, 1135370, 1135370, 3711, 1;
1, 8388, 7849141, 464306300, 7849141, 8388, 1;
1, 17161, 40410421, 10431621081, 10431621081, 40410421, 17161, 1;
-
f:= func< n | (n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30 >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
-
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) +T(n-1, k-1) +((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
-
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30)*T[n-2, k-1] ];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
def f(n): return (n+1)*(n+2)*(2*n+3)*(3*n^2+9*n+5)/30
def T(n,k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
A154231
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 278, 1, 1, 1579, 1579, 1, 1, 6005, 1233308, 6005, 1, 1, 18207, 20504692, 20504692, 18207, 1, 1, 47216, 194715939, 35816807848, 194715939, 47216, 1, 1, 108993, 1319518787, 1302709376779, 1302709376779, 1319518787, 108993, 1, 1, 229819, 7024500980, 24830582225241, 4330171226988158, 24830582225241, 7024500980, 229819, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 278, 1;
1, 1579, 1579, 1;
1, 6005, 1233308, 6005, 1;
1, 18207, 20504692, 20504692, 18207, 1;
1, 47216, 194715939, 35816807848, 194715939, 47216, 1;
1, 108993, 1319518787, 1302709376779, 1302709376779, 1319518787, 108993, 1;
-
f:= func< n | Binomial(n+2,2)^2*(2*n^2+6*n+3)/3 >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
-
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
-
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T[n-2, k-1] ];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
def f(n): return binomial(n+2,2)^2*(2*n^2+6*n+3)/3
def T(n,k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
A154233
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (n^2 +n -1)*T(n-2, k-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 19, 19, 1, 1, 39, 171, 39, 1, 1, 69, 761, 761, 69, 1, 1, 111, 2429, 8533, 2429, 111, 1, 1, 167, 6335, 52817, 52817, 6335, 167, 1, 1, 239, 14383, 231611, 711477, 231611, 14383, 239, 1, 1, 329, 29485, 809809, 5643801, 5643801, 809809, 29485, 329, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 19, 19, 1;
1, 39, 171, 39, 1;
1, 69, 761, 761, 69, 1;
1, 111, 2429, 8533, 2429, 111, 1;
1, 167, 6335, 52817, 52817, 6335, 167, 1;
1, 239, 14383, 231611, 711477, 231611, 14383, 239, 1;
1, 329, 29485, 809809, 5643801, 5643801, 809809, 29485, 329, 1;
-
f:= func< n | n^2+n-1 >;
function T(n,k)
if k eq 0 or k eq n then return 1;
else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
-
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else T(n-1, k) + T(n-1, k-1) + (n^2+n-1)*T(n-2, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
-
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + (n^2+n-1)*T[n-2, k-1] ];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
def f(n): return n^2+n-1
def T(n,k):
if (k==0 or k==n): return 1
else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
Showing 1-5 of 5 results.
Comments