A154262 a(n) = 9*n^2 - 10*n + 3.
3, 2, 19, 54, 107, 178, 267, 374, 499, 642, 803, 982, 1179, 1394, 1627, 1878, 2147, 2434, 2739, 3062, 3403, 3762, 4139, 4534, 4947, 5378, 5827, 6294, 6779, 7282, 7803, 8342, 8899, 9474, 10067, 10678, 11307, 11954, 12619, 13302, 14003, 14722, 15459, 16214, 16987
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[2, 19, 54]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {2, 19, 54}, 50] (* Vincenzo Librandi, Feb 02 2012 *) Table[9n^2-10n+3,{n,0,50}] (* Harvey P. Dale, Feb 11 2023 *)
-
PARI
a(n)=9*n^2-10*n+3 \\ Charles R Greathouse IV, Dec 27 2011
Formula
From Vincenzo Librandi, Feb 02 2012: (Start)
G.f.: (3 - 7*x + 22*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (3 - x + 9*x^2)*exp(x). - Elmo R. Oliveira, Oct 31 2024
Extensions
Edited by Charles R Greathouse IV, Jul 25 2010
Comments