cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154262 a(n) = 9*n^2 - 10*n + 3.

Original entry on oeis.org

3, 2, 19, 54, 107, 178, 267, 374, 499, 642, 803, 982, 1179, 1394, 1627, 1878, 2147, 2434, 2739, 3062, 3403, 3762, 4139, 4534, 4947, 5378, 5827, 6294, 6779, 7282, 7803, 8342, 8899, 9474, 10067, 10678, 11307, 11954, 12619, 13302, 14003, 14722, 15459, 16214, 16987
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - a(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [3n-2; {2, 1, 3n-3, 1, 2, 6n-4}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 05 2022

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 02 2012: (Start)
G.f.: (3 - 7*x + 22*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (3 - x + 9*x^2)*exp(x). - Elmo R. Oliveira, Oct 31 2024

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010