A154296
Primes of the form (1+2+3+...+m)/15 = A000217(m)/15, for some m.
Original entry on oeis.org
-
lst={};s=0;Do[s+=n/15;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
Select[(Accumulate[Range[200]])/15,PrimeQ] (* Harvey P. Dale, Oct 30 2011 *)
-
select(x->denominator(x)==1 & isprime(x), vector(30,m,m^2+m)/30) \\ M. F. Hasler, Dec 31 2012
A154300
Primes of the form (1+2+...+m)/57 = A000217(m)/57.
Original entry on oeis.org
-
lst={};s=0;Do[s+=n/57;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,2*9!}];lst
Select[Accumulate[Range[1000]]/57,PrimeQ] (* Harvey P. Dale, Jun 24 2015 *)
-
d=57*2;for(m=1,999,(m^2+m)%d==0&isprime((m^2+m)/d)&print1(m",")) \\ print the m-values(!) - use A154304(57) to get A154300 as a vector. \\ - M. F. Hasler, Jan 06 2013
A154298
Primes of the form (1+...+m)/33 = A000217(m)/33, for some m.
Original entry on oeis.org
-
lst={};s=0;Do[s+=n/33;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
Select[Accumulate[Range[200]]/33,PrimeQ] (* Harvey P. Dale, Aug 11 2025 *)
-
select(x->denominator(x)==1 & isprime(x), vector(66, m, m^2+m)/66) \\ - M. F. Hasler, Dec 31 2012
Showing 1-3 of 3 results.
Comments