A154327 Diagonal sums of number triangle A132046.
1, 1, 2, 5, 8, 15, 24, 41, 66, 109, 176, 287, 464, 753, 1218, 1973, 3192, 5167, 8360, 13529, 21890, 35421, 57312, 92735, 150048, 242785, 392834, 635621, 1028456, 1664079, 2692536, 4356617, 7049154, 11405773, 18454928, 29860703, 48315632, 78176337, 126491970, 204668309, 331160280, 535828591, 866988872
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
Crossrefs
A shifted version of A066629.
Programs
-
Magma
[0^n-(3+(-1)^n)/2+2*Fibonacci(n+1):n in [0..40]]; // Vincenzo Librandi, Sep 12 2016
-
Mathematica
Join[{1}, LinearRecurrence[{1, 2, -1, -1}, {1, 2, 5, 8}, 25]] (* G. C. Greubel, Sep 11 2016 *) CoefficientList[Series[(1 - x^2 + 2 x^3 + x^4) / ((1 - x^2) (1 - x - x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)
Formula
G.f.: (1 - x^2 + 2x^3 + x^4)/( (1-x^2)*(1-x-x^2) ).
a(n) = 0^n - (3 + (-1)^n)/2 + 2*Fibonacci(n+1).